Enzymes are special proteins that carry out chemical reactions, also known as catalysts. Two important features that make all enzymes catalysts are their ability to bind to a substrate. A substrate is anything that needs to be changed into something else. The second important feature is that it works to lower the activation energy without being used or changed in the reaction (Hudon-Miller, 2012.…
• An enzyme is a specific organic catalyst (substance that speeds up reaction without being used up in the experiment) in which it binds on to a specific substrate (reactant) at the active site and lowers the activation energy required to perform that reaction. Enzymes are important biologically because, for example, the human body performs certain reactions that keep us alive and most of them react at 37 degrees Celsius (body temperature. In each of these reactions, there is an enzyme that catalyzes these reactions to lower the amount of energy needed to perform this reaction. If enzymes didn’t exist then body temperature wouldn’t be enough to perform any of these reactions properly. Enzymes have certain conditions in which it will work in. For instance, most enzymes react at certain temperatures (varies in each enzyme), most enzymes react from a pH of 6- 8, and react faster or slower according to the amount of substrate present. Altering temperature, pH level, and concentrations of enzyme and substrates may cause absolute no change to the activation energy in which the enzyme would have been denatured. In addition to these environmental factors, other molecules may react with an enzyme. These may have great to no effect on the enzymes. Those…
Enzymes are proteins that act as catalysts during a biochemical process. Catalysts are non-changing enzymes that can increase or decrease activation energy to accelerate or slow down a biochemical reaction without using additional energy.…
Effect of varying Temperatures on Enzymatic Activity of Bacterial and Fungal Amylase and hydrolysis of Starch…
The aim of this EEI was to test the effects of temperature on the activity of the enzyme Amylase. Solutions of starch and amylase were held at selected temperatures by various methods of temperature control. Once the solutions reached and maintained the desired temperature they were combined. Samples at timed intervals were then taken and reacted with a reagent to determine the effect the selected temperatures had on the reaction rate of enzyme and substrate. Results indicated that the enzyme functions efficiently at its optimum temperature (50oC) digesting the starch present and that any sign of enzyme function at 70oC is completely nonexistent. In summary the experiments conducted in the EEI succeeded in demonstrating the effects temperature has enzyme activity and just how vital enzymes are for biological life.…
Enzymes are biological molecules that catalyze chemical reactions. In enzymatic reactions, the molecules at the beginning of the process, called substrates, are converted into different molecules, called products. Almost all chemical reactions in a biological cell need enzymes in order to occur at rates sufficient for life. Like all catalysts, enzymes work by lowering the activation energy for a reaction, thus dramatically increasing the rate of the reaction. As a result, products are formed faster and reactions reach their equilibrium state more rapidly. Most enzyme reaction rates are millions of times faster than those of comparable un-catalyzed reactions. As with all catalysts, enzymes are not consumed by the reactions they catalyze, nor do they alter the equilibrium of these reactions. However, enzymes do differ from most other catalysts in that they are highly specific for their substrates. Enzymes are known to catalyze about 4,000 biochemical reactions.…
This lab was focused on determining the optimal temperature of the enzyme amylase responsible for catabolizing starch polymers and to see how different temperatures affected the rate as well as how effectively the enzyme worked. To proceed with the experiment the group set up four different test tubes for each, bacteria and fungal amylase, and labeled them accordingly with different temperatures as well as different solutions . Then the spot plates were placed on the time and temperature table created with napkins and iodine was added to the first row were the solutions would be added later according to the time and temperature of each row. Because iodine reacts and turns a dark black color when starch is present they could determine the optimal temperature of each type of amylase by looking at and comparing the color changes. The group could reach a conclusion because they observed that at low temperatures more starch was present as well as at high temperature which was were the most starch was present. Because of these observations they concluded that the optimal temperature for amylase should be at about fifty-five degree celsius.…
In this lab we explore an enzymes activity and how it can be affected by changes to its environment. An enzyme is a protein and is a catalyst to chemical reactions. It helps accelerate reactions by lowering the activation energy, which is needed for reactions in cells to progress at a higher rate. Activation energy is the minimum amount of energy needed for a chemical reaction to occur, yielding products from a given set of reactants. (Unit 7: Enzymes lab)…
The purpose of this experiment was to determine (1) the reaction rate of an amylase enzyme in starch and (2) the environmental factors that can affect the enzymatic activity. The hypothesis, in relation to the enzymatic activity by variables such as the substrate concentrations, temperature, PH and chemical interactions on the rate of reaction, stated the following scenarios: (1) If the substrate concentration is increased, then the enzymatic rate will increase (2) If the temperature is increased, then the enzymatic rate will also increase (3) If the PH level is increased, then the enzymatic rate will decrease.…
Most organisms have a preferred temperature and pH range in which they survive, and their enzymes usually function best within very narrow temperature and pH ranges. If the environment of the enzyme is too acidic, basic, or hot, the activity of the enzyme may be altered due to a change in the three-dimensional shape of the enzyme. Denaturation, the unraveling or structural changes of an enzyme, may be temporary or permanent depending on the degree of the environmental change. In either case, a denatured enzyme no longer has the shape necessary to interact with the substrate effectively to lower the activation…
A catalyst is a substance that reduces the activation energy of a chemical reaction, making it energetically viable. It is also used to speed up the rate of a chemical reaction. Enzymes are an example of a catalyst that can be found in the body. They are biological catalysts which are mainly made up of proteins. It is produced to speed up chemical reactions and remain unchanged after a reaction. Enzymes have active site for the substrate to attach to, either to be broken up or joined together. They are also specific in their reactions, they only speed up certain reaction as the active site can only fit a certain substrate and does not work for the other substrates. Also, enzymes will only work properly upon strict optimum conditions. They lower the…
Enzymes are a key aspect in our everyday life and are a key to sustaining life. They are biological catalysts that help speed up the rate of reactions. They do this by lowering the activation energy of chemical reactions (Biology Department, 2011).…
Introduction: Enzymes are biological catalysts that speed up metabolic reactions without being affected. They lower the activation energy needed to start a reaction.Enzymes are affected by several factors including PH, Substrate concentration; Temperature & other factors. Each enzyme has an optimum temperature at which its activity is the highest, below this optimum temp, the kinetic energy of molecules decrease , therefore the collisions between the active site of the enzyme and substrate decreases , as a result the enzyme activity will decrease , so decreasing the rate of the reaction If the temp. Exceeds the optimum temp. The kinetic energy between molecules increase therefore collisions increase leading to the change in the tertiary structure of the enzyme and in this case active site is lost and the enzymes will be denatured so the reaction will slow down &stops. Catalase is an enzyme, found basically in all living cells. It breaks down hydrogen peroxide (waste product) into water and oxygen.…
Abstract In this lab, we tested the effects of temperature on fungal amylase and bacterial amylase (Aspergillus oryzae and Bascillus Licheniformis). We used 4 different temperatures in Celsius 0, 23, 58, and 89 for both fungal and amylase. For 10 minutes, every 2 minutes we would use 3 drops of each amylase and mix it with iodine to observe the presence of starch at each temperature. We conducted this experiment for both bacterial and fungal amylase.…
An enzyme is a biological catalyst, meaning that it is a substance that possess the ability to increase or speed up the rate of reaction without itself being used up in the process. Enzymes provide an alternate reaction pathway by lowering the activation energy needed for a reaction to occur. For two molecules to react they must collide with each other, however, they have to collide with sufficient energy. Sufficient energy means that between them they have enough energy to overcome the energy barrier to reaction. This is called the activation energy.…