get the mass of a evaporating dish, put a sample of the hydrate onto the evaporating dish and mass the dish with hydrate.…
The purpose of this experiment is to provide an opportunity to practice proper heating and cooling techniques and to calculate the formula of a known anhydrous compound and to calculate the percent of water in an unknown hydrate from results.…
Conclusion: The purpose of this lab was to visually see the chemical change that was taking place when hydrates gain and lose water.The formula for blue hydrate is anhydrous copper (ii) sulfate (CuSO4). The percent error for the mass of water is -94.40%. The effect of the hydrate not being heated long enough would result in water still being in the hydrate. If the test tube was not dried completely prior to the initial measurement it would cause the data to follow that incorrect measurement to be false and it would also add more water into the hydrate than what was initially projected. If the anhydride was allowed to sit over before the final mass measurement was taken it would result in more water loss from the hydrate. The moles of CuSO4…
The data in the table above was used in the determination of the calculation of metal ions in the samples of both TAP and DI water.…
2. Record how many mL of solution you add into the evaporating dish then mass them together.…
The process is to record the tare weight of a clean crucible. According to WiseGEEK, tare weight is the weight of an object (such as a jar, a cup, or, in this case, a crucible) when it is empty. You will add 2g of the copper sulfate hydrate crystals into the crucible, and then you weigh the crucible with the copper sulfate hydrate crystals and record the data. You then heat the crucible with the hydrate in it with a Bunsen burner for slightly more than 10 minutes, and then you weigh and record the data into your data table. After the weighing, it is reheated for five more minutes, and again weighed and recorded. If the masses are not within 0.05g of each other, you reheat it for another two minutes, weigh the masses again, and record the data. Keep reheating it until the weights are within 0.05g of each other. Then you will calculate and analyze…
The percent of any compound or element can be found by using a certain formula. This formula is: % of element = Mass of element or compound/Total mass of compound x100. In order to use this formula the mass of the water and the total mass of the hydrate had to be found. The lab workers…
A hydrate is a substance that holds water in a certain ratio. As Hydrates are compounds with constant composition, we were able to easily determine this ratio by evaporating the water and then calculating a common ratio. We had Copper sulfate pentahydrous. In our experiment and on further calculations we observed that generally ten molecules of water combine with one molecule of…
To determine the identity of an unknown hydrated salt calculating the percent water loss after heating and also to determine the empirical formula of magnesium oxide.…
1. What effect does increasing the afferent radius have on glomerular filtration rate and pressure?…
The mass percent of water was determined using the mass of water and dividing it by the total mass of the hydrate and then multiplying that answer by 100%. The number of moles of water in a hydrate was determined by taking the mass of the water released and dividing it by the molar mass of water. The number of moles of water and the number of moles of the hydrate was used to calculate the ratio of moles of water to moles of the sample. This ratio was then used to write the new and balanced equation of the dehydration process. The sample was then rehydrated to the original state and the percent of the hydrate recovered was calculated by using the mass of the rehydrated sample by the mass of the original hydrate and then multiplied by 100%.…
Hydrates are chemical compounds that contain discrete water molecules as part of their crystalline structure. Water is bound in most hydrates in definite, stoichiometric proportions, and the number of water molecules bound per metal ion is often characteristic of a particular metal ion. Many hydrated salts can be transformed to the anhydrous (without water) compound by application of heat. In this experiment, we determine the empirical formula of copper (II) sulfate – CuSO4.…
In the experiment, we tested a sodium chloride solution. Along with the tested solution, control groups (water and sodium phosphate) were used to be help understand whether or not NaCl was a buffer. Water was the negative control group and sodium phosphate was the positive control group. If NaCl was a buffer than the pH would be stabled as the sodium phosphate buffer. If NaCl was not a buffer than the pH would fluctuate like the negative control, water. During the first trial and prior to the drops of 0.5 M of HCl acid, the pH of sodium chloride was 7.50. After the addition of 5 drops of 0.5 M of HCl, the pH decreased by 4.83 and ended at 2.67 on the pH scale. When comparing the results of the sodium chloride to the control groups, the total pH change of sodium phosphate was only…
The lab in which we conducted last Tuesday was an analysis of a hydrate and what happens to it when it is heated. A hydrate is a crystalline compound which water molecules are chemically bound to it. In the lab, we were to analyze the difference in grams of the hydrate and the anhydrate. An anhydrate is the crystalline compound without the water molecules bound to it. During our lab, we were to heat up the crucible, the crucible with hydrate, and the crucible with an anhydrous and write down each weight, then repeat. Once we completed that task then we were to find the number of moles of water lost, the number of moles of anhydrous copper sulfate, percent comp of water in the hydrated copper sulfate, the mole ratio of moles of water and moles of anhydrous copper sulfate. Once this is all done, we found our percent error and compared it to the exact value.…
The purpose of this experiment was to determine the percent by mass in a hydrated salt, as well as to learn to handle laboratory apparatus without touching it. The hydrated salt, calcium carbonate, was heated with high temperature to release water molecules. Gravimetric analysis was used in this experiment to determine the percent by mass of water in a hydrated salt. The hypothesis of this experiment was accepted on the basis that the percent by mass of volatile water in the hydrated salt would be fewer than 30%. The percent by mass was determined by the mass of water loss devised by the mass of hydrated salt multiplied by total capacity (100%).…