Many people are asking, “Why fuel cells?” The gasoline engine in a conventional car is less than 20% efficient in converting the chemical energy in gasoline into power that moves the vehicle, under normal driving conditions. Hydrogen fuel cell vehicles, which use electric motors, are much more energy efficient and use 40-60 percent of membrane to the other side of the cell, the stream of negatively-charged electrons follows an external circuit to the cathode. This flow of electrons is electricity that can be used to do work, such as power a motor. On the other side of the cell, oxygen gas, typically drawn from the outside air, flows through channels to the cathode. When the electrons return from doing work, they react with oxygen and the hydrogen protons (which have moved through the membrane) at the cathode to form water. This union is an exothermic reaction, generating heat that can be used outside the fuel cell. The future of hydrogen fuel-cell vehicles depends on advances in four areas: the hydrogen source, the distribution infrastructure, the on-board fuel tank and the on-board fuel cell. Hydrogen must be made from carbon-free renewable sources before fuel-cell vehicles can make a dent in the climate problem. One idea is to make the hydrogen
Many people are asking, “Why fuel cells?” The gasoline engine in a conventional car is less than 20% efficient in converting the chemical energy in gasoline into power that moves the vehicle, under normal driving conditions. Hydrogen fuel cell vehicles, which use electric motors, are much more energy efficient and use 40-60 percent of membrane to the other side of the cell, the stream of negatively-charged electrons follows an external circuit to the cathode. This flow of electrons is electricity that can be used to do work, such as power a motor. On the other side of the cell, oxygen gas, typically drawn from the outside air, flows through channels to the cathode. When the electrons return from doing work, they react with oxygen and the hydrogen protons (which have moved through the membrane) at the cathode to form water. This union is an exothermic reaction, generating heat that can be used outside the fuel cell. The future of hydrogen fuel-cell vehicles depends on advances in four areas: the hydrogen source, the distribution infrastructure, the on-board fuel tank and the on-board fuel cell. Hydrogen must be made from carbon-free renewable sources before fuel-cell vehicles can make a dent in the climate problem. One idea is to make the hydrogen