On the past two weeks, I have done an experiment on hydrostatics, or is also known as fluid statics (fluid at rest) within the fluid mechanics field of study. This condition explains that in a stable condition, the fluid is at rest. The use of fluid in doing work is known as hydraulics, and the science of fluid in motion is known as fluid dynamics.
INTRODUCTION
The natural nature of fluids are they cannot remain stationary under the application of shear stress. However, fluid can apply force normal to any surface contacting it. If the fluid is considered as a solid object such as a cylinder, the pressure acting on a surface is the same as the pressure on the opposite side of the object, but in a different direction. This condition can be applied to any surface on the imaginary fluid shape. This thus defines that the pressure on a fluid is isotropic, meaning that the force/pressure in any direction applied on the liquid is the same in all directions.
Hydrostatic Pressure
Hydrostatic pressure is the pressure exerted by a fluid at equilibrium due to the gravitational pull. The fluid is known as hydrostatic fluid. The pressure can be calculated from the control volume analysis of a small cube of fluid. It is known that pressure is force applied per unit area P = F/A, and the onlyforce acting on any such small cube of fluid is the weight of column above it, we can calculate the hydrostatic pressure by:
The sumary of the theory is the force on any flat surface is the average pressure acting on the submerged surface multiplied by the area of the submerged surface.
F = ρgXA
Where:
ρ = water density g = acceleration due to gravity
X = vertical distance from free surface to centroid of A
We know that the magnitude of the distributes force F, which may be considered as a small series of small forces spread over the submerged surface. The sum of the moments of all these small forces about any point must be equivalent to the moment about the