143
Modelling and simulation for one-day cricket
Tim B. SWARTZ1 *, Paramjit S. GILL2 and Saman MUTHUKUMARANA1 of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6 2 Mathematics, Statistics and Physics Unit, University of British Columbia Okanagan, Kelowna, British Columbia, Canada V1V 1V7 Key words and phrases: Bayesian latent variable model; cricket; Markov chain methods; Monte Carlo simulation; sports statistics; WinBUGS. MSC 2000: Primary 62P99; secondary 62F15. Abstract: This article is concerned with the simulation of one-day cricket matches. Given that only a finite number of outcomes can occur on each ball that is bowled, a discrete generator on a finite set is developed where the outcome probabilities are estimated from historical data involving one-day international cricket matches. The probabilities depend on the batsman, the bowler, the number of wickets lost, the number of balls bowled and the innings. The proposed simulator appears to do a reasonable job at producing realistic results. The simulator allows investigators to address complex questions involving one-day cricket matches. The Canadian Journal of Statistics 37: 143–160; 2009 © 2009 Statistical Society of Canada Resume: Cet article porte sur la simulation de matchs de cricket d’une seule journ´ e. Etant donn´ qu’il y a e ´ e ´ ´ un nombre fini d’´ v´ nements possibles a chaque lancer de balle, un g´ n´ rateur discret. Sur un ensemble fini e e e e ` est d´ velopp´ o` les probabilit´ s de chacun des ev´ nements sont estim´ es a partir de donn´ es historiques e e u e e ` e ´ e provenant de matchs de cricket international d’une seule journ´ e. Les probabilit´ s d´ pendent du batteur, du e e e lanceur, du nombre de guichets perdus, du nombre de balles lanc´ es et des manches. Le simulateur propos´ e e semble faire un travail raisonnable en
Bibliography: A. Agresti (2002). Categorical Data Analysis, 2nd edition, Wiley, New York. M. J. Bailey & S. R. Clarke (2004). Market inefficiencies in player head to head betting on the 2003 cricket world cup. In Economics, Management and Optimization in Sport, S. Butenko, J. Gil-Lafuente & P. M. Pardalos, editors, Springer-Verlag, Heidelberg, pp. 185–202. M. J. Bailey & S. R. Clarke (2006). Predicting the match outcome in one day international cricket matches, while the match is in progress. Journal of Science and Sports Medicine, 5, 480–487. S. M. Berry, C. S. Reese & P. D. Larkey (1999). Bridging different eras in sports. Journal of the American Statistical Association, 94, 661–676. B. M. de Silva & T. B. Swartz (1997). Winning the coin toss and the home team advantage in one-day international cricket matches. The New Zealand Statistician, 32, 16–22. B. M. de Silva, G. R. Pond & T. B. Swartz (2001). Estimation of the magnitude of victory in one-day cricket. The Australian and New Zealand Journal of Statistics, 43, 259–268. DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique 160 SWARTZ, GILL AND MUTHUKUMARANA Vol. 37, No. 2 F. C. Duckworth & A. J. Lewis (1998). A fair method for resetting targets in one-day cricket matches. Journal of the Operational Research Society, 49, 220–227. F. C. Duckworth & A. J. Lewis (2004). A successful operational research intervention in one-day cricket. Journal of the Operational Research Society, 55, 749–759. D. Dyte (1998). Constructing a plausible test cricket simulation using available real world data. In Mathematics and Computers in Sport, N. de Mestre & K. Kumar, editors, Bond University, Queensland, Australia, pp. 153–159. W. E. Elderton (1945). Cricket scores and some skew correlation distributions. Journal of the Royal Statistical Society, Series A, 108, 1–11. A. C. Kimber & A. R. Hansford (1993). A statistical analysis of batting in cricket. Journal of the Royal Statistical Society, Series A, 156, 443–455. D. Spiegelhalter, A. Thomas, N. Best & D. Lunn (2004). WinBUGS User Manual Version 1.4.1, Medical Research Council Biostatistics Unit, Cambridge. T. B. Swartz, P. S. Gill, D. Beaudoin & B. M. de Silva (2006). Optimal batting orders in one-day cricket. Computers & Operations Research, 33, 1939–1950. G. H. Wood (1945). Cricket scores and geometrical progression. Journal of the Royal Statistical Society, Series A, 108, 12–22. Received 14 January 2008 Accepted 2 March 2009 The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs