Have you ever thought how this world of mathematics would be without irrational numbers? If the great Pythagorean hyppasus or any other mathematician would have not ever thought of such numbers? Before ,understanding the development of irrational numbers ,we should understand what these numbers originally are and who discovered them? In mathematics, an irrational number is any real number that cannot be expressed as a ratio a/b, where a and b are integers and b is non-zero. Irrational numbers are those real numbers that cannot be represented as terminating or repeating decimals. the best-known irrational numbers are: the ratio of a circle's circumference to its diameter π, Euler's number e, the golden ratio φ, and the square root of two √2.
The history of irrational numbers stated way back in 750-bc
It has been suggested that the concept of irrationality was implicitly accepted by Indian mathematicians since the 7th century BC, when Manava (c. 750 – 690 BC) believed that the square roots of numbers such as 2 and 61 could not be exactly determined. The first proof of the existence of irrational numbers is usually attributed to a Pythagorean (possibly Hippasus of Metapontum),[7] who probably discovered them while identifying sides of the pentagram. However, Hippasus, in the 5th century BC, was able to deduce that there was in fact no common unit of measure, and that the assertion of such an existence was in fact a contradiction. He did this by demonstrating that if the hypotenuse of an isosceles right triangle was indeed commensurable with a leg, then that unit of measure must be both odd and even, which is impossible. The discovery of incommensurable ratios was indicative of another problem facing the Greeks: the relation of the discrete to the continuous. Brought into light by Zeno of Elea, who questioned the conception that quantities are discrete and composed of a finite number of units of a given size. The next step was taken by