1
Mathematics in medieval Islam
In the history of mathematics, mathematics in medieval Islam, often termed Islamic mathematics or Arabic mathematics, is the mathematics developed in the Islamic world between 622 and 1600, during what is known as the Islamic Golden Age, in that part of the world where Islam was the dominant religion. Islamic science and mathematics flourished under the Islamic caliphate (also known as the Islamic Empire) established across the Middle East, Central Asia, North Africa, Southern Italy, the Iberian Peninsula, and, at its peak, parts of France and India as well. Islamic activity in mathematics was largely centered around modern-day Iraq and Persia, but at its greatest extent stretched from North Africa and Spain in the west to India in the east.[1] While most scientists in this period were Muslims and wrote in Arabic,[2] many of the best known contributors were Persians[3] [4] as well as Arabs,[4] in addition to Berber, Moorish and Turkic contributors, as well as some from other religions (Christians, Jews, Sabians, Zoroastrians, and the irreligious).[2] Arabic was the dominant language—much like Latin in Medieval Europe, Arabic was the written lingua franca of most scholars throughout the Islamic world.
Use of the term "Islam"
Bernard Lewis writes the following on the historical usage of the term "Islam" in What Went Wrong? Western Impact and Middle Eastern Response:[5] "There have been many civilizations in human history, almost all of which were local, in the sense that they were defined by a region and an ethnic group. This applied to all the ancient civilizations of the Middle East—Egypt, Babylon, Persia; to the great civilizations of Asia—India, China; and to the civilizations of Pre-Columbian America. There are two exceptions: Christendom and Islam. These are two civilizations defined by religion, in which religion is the primary defining force, not, as in India or China, a secondary aspect
References: "Al-Karaji also uses a form of mathematical induction in his arguments, although he certainly does not give a rigorous exposition of the principle." [132] Katz (1998), p