Brassica crops are used for human nutrition and provide opportunities for the study of genome evolution. These crops include important vegetables (B. rapa (Chinese cabbage, pak choi and turnip) and Brassica oleracea (broccoli, cabbage and cauliflower)) as well as oilseed crops (Brassica napus, B. rapa, Brassica juncea and Brassica carinata), which provide collectively 12% of the world's edible vegetable oil production9. The six widely cultivated Brassica species are also a classical example of the importance of polyploidy in botanical evolution, described by 'U's triangle'10, with the three diploid species B. rapa (A genome), Brassica nigra (B genome) and B. oleracea (C genome) having formed the amphidiploid species B. juncea (A and B genomes), B. napus (A and C genomes) and B. carinata (B and C genomes) by
Brassica crops are used for human nutrition and provide opportunities for the study of genome evolution. These crops include important vegetables (B. rapa (Chinese cabbage, pak choi and turnip) and Brassica oleracea (broccoli, cabbage and cauliflower)) as well as oilseed crops (Brassica napus, B. rapa, Brassica juncea and Brassica carinata), which provide collectively 12% of the world's edible vegetable oil production9. The six widely cultivated Brassica species are also a classical example of the importance of polyploidy in botanical evolution, described by 'U's triangle'10, with the three diploid species B. rapa (A genome), Brassica nigra (B genome) and B. oleracea (C genome) having formed the amphidiploid species B. juncea (A and B genomes), B. napus (A and C genomes) and B. carinata (B and C genomes) by