Kinematics is the geometry of pure motion - motion considered abstractly, without reference to force or mass. Engineers use kinematics in machine design. Although hidden in much of modern technology, kinematic mechanisms are important components of many technologies such as robots, automobiles, aircraft, satellites, and consumer electronics, as well as biomechanical prostheses. In physics, kinematics is part of the teaching of basic ideas of dynamics; in mathematics, it is a fundamental part of geometric thinking and concepts of motion. The development of high-speed computers and robotics, and the growth of design synthesis theory and mechatronics have recently revived interest in kinematics and early work in machine design. Working in the decades following Ampère's death, Franz Reuleaux (1829-1905) is considered the founder of modern kinematics. Reuleaux called it "the study of the motion of bodies of every kind…and the study of the geometric representation of motion" (Kinematics of Machinery 56). Kinematics flourished in the 19th century as machine inventors learned to transmit information and forces (power) from one element in the machine to another. Steam- and water-based machines revolutionized the l9th century, but both of those energy sources generate circular motions, creating the need to convert these steady circular motions into nonsteady linear and curvilinear motion for machine applications. Practical inventors as well as mathematicians [Artobolevskii 1964] took up the challenge to create input-output kinematic devices that could convert circular motion into noncircular, complex, three-dimensional, intermittent motions. Thousands of mechanisms were invented, designed, and built, nurturing the widespread use and manufacture of machines. Reuleaux set out to codify, analyze, and synthesize kinematic mechanisms so that engineers could approach machine design in a rational way. He laid the foundation for a
Kinematics is the geometry of pure motion - motion considered abstractly, without reference to force or mass. Engineers use kinematics in machine design. Although hidden in much of modern technology, kinematic mechanisms are important components of many technologies such as robots, automobiles, aircraft, satellites, and consumer electronics, as well as biomechanical prostheses. In physics, kinematics is part of the teaching of basic ideas of dynamics; in mathematics, it is a fundamental part of geometric thinking and concepts of motion. The development of high-speed computers and robotics, and the growth of design synthesis theory and mechatronics have recently revived interest in kinematics and early work in machine design. Working in the decades following Ampère's death, Franz Reuleaux (1829-1905) is considered the founder of modern kinematics. Reuleaux called it "the study of the motion of bodies of every kind…and the study of the geometric representation of motion" (Kinematics of Machinery 56). Kinematics flourished in the 19th century as machine inventors learned to transmit information and forces (power) from one element in the machine to another. Steam- and water-based machines revolutionized the l9th century, but both of those energy sources generate circular motions, creating the need to convert these steady circular motions into nonsteady linear and curvilinear motion for machine applications. Practical inventors as well as mathematicians [Artobolevskii 1964] took up the challenge to create input-output kinematic devices that could convert circular motion into noncircular, complex, three-dimensional, intermittent motions. Thousands of mechanisms were invented, designed, and built, nurturing the widespread use and manufacture of machines. Reuleaux set out to codify, analyze, and synthesize kinematic mechanisms so that engineers could approach machine design in a rational way. He laid the foundation for a