“Lab-on-a-Chip”
A Lab-on-a-Chip (LOC) device, also known as a micro-total-analytical system (microTAS) or microfluidics device, is a device that can integrate miniaturized laboratory functions (such as separation and analysis of components of a mixture) on a single microprocessor chip using extremely small fluid volumes on the order of nanoliters to picoliters. From a technology categorization perspective, LOCs can be viewed as a subset of microelectromechanical systems (MEMS) and combine miniaturized or novel sensing systems, fluid flow control concepts from microfluidics, and the suite of fabrication techniques (such as material deposition, material removal, surface patterning, and electrical property modification) used by the semiconductor industry. Currently, the main commercial applications of LOCs are in the medical and biotechnological fields, where it is anticipated that developments so far are the heralds of a technological revolution. In the same way that miniaturization changed computers from machines of limited capabilities occupying large rooms to small and easily portable yet powerful technology of today, over a period of a few decades, medical, biotechnological, and chemical analysis is expected to move from room-sized laboratories to microchipbased devices housed in hand-held or small portable readout consoles. Figure 28 shows an example of an LOC device that was tested on the International Space Station in 2007.
Figure 28: LOC device tested on the International Space Station in 2007 At the heart of LOC devices are “chips”, ranging in size from a fingernail to a credit card, fabricated using processes adapted from the printed circuit industry such as lithography, chemical etching, and laser machining. Figure 29 illustrates an impression of the size of the chip. Figure 30 provides a functional diagram of LOCs.
99
Figure 29. A comparison of the size of LOCs
Figure 30. Functional diagram of LOCs In a manner similar to the
References: Berger, R., E. Delamarche, H.P. Lang, Ch. Gerber, J.K. Gimzewski, E. Meyer, H.-J. Güntherodt. 1997. Surface stress in the self-assembly of alkanethiols on gold. Science. 276: 2021-2024. Binnig, G., C.F. Quate, C. Gerber. 1986. Physics Review Letters. 56: 930–933. Cherian, S., R. K. Gupta, B. C. Mullin and T. Thundat. 2003. Detection of heavy metal ions using protein-functionalized microcantilever sensors. Biosensors and Bioelectronics. 19(15) 411-416. Hsu. J.C. 2007. Fabrication of Single Walled Carbon Nanotube (SW-CNT) Cantilevers for Chemical Sensing. Thesis for Master of Science in Electrical Engineering (etd11082007-103811), Louisiana State University, May 2007. Ji, H.-F., E. Finot, R. Dabestani, T. Thundat, G. M. Brown, P. F. Britt. 2000a. A Novel Self-Assembled Monolayer (SAM) Coated Microcantilever for Low Level Cesium Detection. Chemical Communications. 457-458. Ji, H-F., T. G. Thundat, R. Dabestani, G. M. Brown, P. F. Britt, P. V. Bonnesen. 2000b. Ultrasensitive Detection of CrO42- Using a Microcantilever Sensor. Analytical Chemistry. 73: 1572-1576. McFarland, A.W. and J.S. Colton. 2005. Chemical sensing with micromolded plastic microcantilevers. Journal of Microelectromechanical Systems. 14: 1375-85. Petersen, K. E. 1982. Silicon as a mechanical material. Proceedings of IEEE. 70: 420– 457. 107 Thundat, T., E. Finot, H-F. Ji, R. Dabestani, P. F. Britt, P. V. Bonnesen, G. M. Brown, R. J. Warmack. 1999. Highly Selective Microcantilever Sensor for Cesium Ion Detection. Proceedings of Electrochemical Society. 99(123) 314-319. Thundat, T.G. 2002. Microsensors for In situ Chemical, Physical, and Radiological Characterization of Mixed Waste. EMSP-73808-2002. U.S. DOE Environmental Management Science Program Report, Washington DC. Thundat, T.G., Z. Hu, G.M. Brown, B. Gu. 2006. Microcantilever Sensors for In situ Subsurface Characterization. 2006 ERSD Annual Report. Oak Ridge National Laboratory, Tennessee. 108