Operational Amplifier Applications
Introduction
Operational amplifiers (“op-amp”) are high gain electronic voltage amplifiers, which are the significant building blocks for most electronic circuits. In addition to this, they are still the most widely used microelectronic devices nowadays, being used in vast applications for industrial and individual users. The aim of this experiment is to demonstrate how the operational amplifier operates and show its imperfections via constructing various kind of circuit such as non-inverting/inverting amplifier circuits, filter circuits, differentiator and integrator circuits.
In this report, we will go through two experiments, which are the fundamental circuits of operational amplifiers: non-inverting and inverting amplifier circuits, to analyze the difference between ideal and real op-amps. For the following section, the relevant theory will be introduced, and then the detail and results of the experiments will be discussed before proceeding to conclusion.
Theory
Figure 1 : The op amp and its ideal attributes
As the Figure1 shown, operational amplifier has two inputs labeled (+) and (-) with positive and negative power supply, and a single output. It is primarily a high gain differential amplifier which amplifies the difference of voltages between two inputs. The output voltage of the amplifier Vout is given by the following formula: Vout = A (V+ - V-) --------------- (1)
Where A is the open loop voltages gain of the amplifier, which typically is very large about 105 at low frequency. V+ and V- are the non-inverting and inverting input voltage respectively. From the equation, output voltage is entirely governed by the difference between the two input voltages. However for real op-amps inputs do draw a small amount of current and the output voltage is affected by the output current drawn. For the analysis, both inverting and non-inverting amplifiers are applying negative