M. J. Peet , H. S. Hasan and H. K. D. H. Bhadeshia1
Published in the International Journal of Heat and Mass Transfer Vol. 54 (2011) page 2602-2608 doi:10.1016/j.ijheatmasstransfer.2011.01.025
Abstract A model of thermal conductivity as a function of temperature and steel composition has been produced using a neural network technique based upon a Bayesian statistics framework. The model allows the estimation of conductivity for heat transfer problems, along with the appropriate uncertainty. The performance of the model is demonstrated by making predictions of previous experimental results which were not included in the process which leads to the creation of the model. Keywords: Thermal Conductivity, Steel, Bayes, Neural Network, Heat treatment, Mathematical models, Physical properties, Temperature, Commercial alloys, Matthiessen’s rule
Prediction of thermal conductivity of 2steel 1∗
1
Introduction
There are many situations in design or in process modelling where it would be useful to know the thermal conductivity of the steel being used, and how it would change as a function of temperature. With the lack of any quantitative model the usual recourse is to look for a similar composition contained in published tables of data [1, 2, 3]. However, in the absence of a quantitative model it is not possible to assess the validity of this procedure. Thermal conductivity controls the magnitude of the temperature gradients which occur in components during manufacture and use. In structural components subjected to thermal cycling, these gradients lead to thermal stresses. During heat treatment the conductivity limits the size of components that can be produced with the desired microstructure, since transformation depends on cooling rate and temperature. A suitable model of thermal conductivity should help to improve the design of steels and understanding of heat treatment, solidification
References: [1] T. C. Totmeier W. F. Gale, editor. Smithells Metals Reference Book. Elsevier/ASM, 8 edition, 2004. [2] Matweb website. http://www.matweb.com/, 2009. [3] J. P. Holman. Heat Transfer. McGraw–Hill Companies, 1997. [4] H. S. Hasan. Evaluation of Heat Transfer Coefficients during Quenching of Steels. PhD thesis, University of Technology, Baghdad, 2010. [5] H. S. Hasan, M. Peet, J. M. Jalil, and H. K. D. H. Bhadeshia. Heat transfer coefficients during quenching of steels. Heat and Mass Transfer, 2010. DOI:10.1007/s00231-010-0721-4. 12 [6] J. T. Staley and J. W. Evancho. Kinetics of precipitation in aluminum alloys during continuous cooling. Metall. Trans., 5:43–47, 1974. [7] R. Franz and G. Wiedemann. Ann. D. Physik, 165(8):497–531, 1853. [8] F. H. Herbstein and J. Smuts. Determination of Debeye temperature of α–iron by X–ray diffraction. Philophical Magazine, 8(87), 367–385 1963. [9] N. F. Mott and H. Jones. Theory of the Properties of Metals and Alloys. Oxford University Press, 1958. [10] A. Matthiessen and C. Vogt. Ann. D. Phys. U. Chem., 122:19, 1864. [11] C. Linde. Ann. D. Physik, 15:219, 1932. [12] N. F. Mott. The electrical resistance of dilute solid solutions. Mathematical Proceedings of the Cambridge Philosophical Society, 32:281–290, 1936. [13] E. Nechtelberger. The properties of cast irons up to 500◦ C. Technical report, Technicopy Ltd, 1980. [14] F. Richter. Die Wichtigsten Physikalishen Eigenschaften von 52 Eisenwerkstoffen. Verlag Stahleisen GmbH, Dusseldorf, 1973. [15] R. W. Powell and M. J. Hickman. Thermal conductivity of a 0.8% carbon steel. Journal of the Iron and Steel Institute, 154:112–116, 1946. [16] D. J. C. MacKay. Bayesian non–linear modelling with neural networks. In H. Cerjak and H. K. D. H. Bhadeshia, editors, Mathematical modelling of weld phenomena 3. IOM, 1997. [17] D. J. C. MacKay. Bayesian methods for adaptive models. PhD thesis, Caltech, 12 1991. [18] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):41, 1992. [19] D. J. C. MacKay. A practical bayesian framework for backpropagation networks. Neural Computation, 4(3):448–472, 1992. [20] bigback. URL:http://www.inference.phy.cam.ac.uk/mackay/bigback/. [21] Neuromat’s model manager. URL:http://www.neuromat.com/. [22] T. Sourmail, H. K. D. H. Bhadeshia, and D. J. C. MacKay. Neural network model of creep strength of austenitic stainless steels. Materials Science and Technology, 18:655–663, 2002. [23] H. K. D. H. Bhadeshia, D. J. C. MacKay, and L.-E. Svensson. Impact toughness of C–Mn steel arc welds - bayesian neural network analysis. Materials Science and Technology, 11:1046–1051, 1995. 13 [24] M. A. Yescas-Gonzalez, H. K. D. H. Bhadeshia, and D. J. C. MacKay. Estimation of the amount of retained austenite in austempered ductile irons. Materials Science and Engineering A, A311:162–173, 2001. [25] R. C. Dimitriu and H. K. D. H. Bhadeshia. Hot-strength of creep-resistant ferritic steels and relationship to creep-rupture data. Materials Science and Technology, 23:1127–1131, 2007. [26] H. K. D. H. Bhadeshia. Neural networks in materials science. ISIJ International, 39:966–979, 1999. [27] H. K. D. H. Bhadeshia, R. C. Dimitriu, S. Forsik, J. H. Pak, and J. H. Ryu. On the perfomance of neural networks in materials science. Materials Science and Technology, 25(4):504–510, 2009. [28] Efunda website. http://www.efunda.com/, 2009. [29] Sandvik materials data sheets. http://www.dsmstaralloys.com/sandvik.htm. [30] P. Kardititas and M-J Baptiste. Thermal and structural properties of fusion related material. http://www-ferp.ucsd.edu/LIB/PROPS/PANOS/ss.html. [31] Bohler–Uddeholm materials data sheets. http://www.bucorp.com. [32] G. F. Vander Voort, editor. ASM Metals Handbook, volume 1. ASM, 8 edition, 1999. [33] Metal Ravne materials data sheets. http://www.metalravne.com. [34] H. S. Hasan and M. J. Peet. Map data thermal. http://www.msm.cam.ac.uk/map/data/materials/thermaldata.html. [35] T. Farrell and D. Grieg. The thermal conductivity of nickel and its alloys. J. Phys. C. (Solid St. Phys.), 2(2):1465–1473, 1969. [36] W. R. G. Kemp, P. G. Klemens, and G. K. Warren. Thermal and electrical conductivies of iron, nickel, titanium, and zirconium at low temperatures. Australian Journal of Physics, 9:180–188, 1955. [37] L. Leibowitz and R. A. Blomquist. Thermal conductivity and thermal expansion of stainless steels D9 and HT9. International Journal of Thermophysics, 9(5):873–883, 1988. [38] Jr J. Matolich. Report BAT-7096 (NASA-CR-54141). Technical report, Battelle Memorial Institute, 1965. [39] C. F. Lucks, H. B. Thompson, A. R. Smith, F. P. Curry, H. W. Deem, and G. F. Bing. Technical report USAF-TR-6145-1. Technical report, United States Air Force, 1951. 14