IN THE MUNICIPALITY OF SAN ANDRES
A RESEARCH STUDY
PRESENTED TO:
MR. TEODIVICO T. PASION
ASST. PROFESSOR III
In Partial Fulfilment of the Requirements for the Subject
PROJECT DEVELOPMENT AND MANAGEMENT
PRESENTED BY:
VINCENT JAY H. GADO
JEREM M. SORIANO
VALENTIN G. DRIO
Chapter I
INTRODUCTION
Background of Study
Plants in mangals are diverse but all are able to exploit their habitat (the intertidal zone) by developing physiological adaptations to overcome the problems of anoxia, high salinity and frequent tidal inundation. About 110 species belong to the mangal. Each species has its own solutions to these problems; this may be the primary reason why, on some shorelines, mangrove tree species show distinct zonation. Small environmental variations within a mangal may lead to greatly differing methods for coping with the environment. Therefore, the mix of species is partly determined by the tolerances of individual species to physical conditions, like tidal inundation and salinity, but may also be influenced by other factors such as predation of plant seedlings by crabs.
Once established, mangrove roots provide an oyster habitat and slow water flow, thereby enhancing sediment deposition in areas where it is already occurring. The fine, anoxic sediments under mangroves act as sinks for a variety of heavy (trace) metals which colloidal particles in the sediments scavenged from the water. Mangrove removal disturbs these underlying sediments, often creating problems of trace metal contamination of seawater and biota.
Mangroves protect coastal areas from erosion, storm surge (especially during hurricanes), and tsunamis. The mangrove's massive root system is efficient at dissipating wave energy. Likewise, they slow down tidal water enough that its sediment is deposited as the tide comes in, leaving all except fine particles when the tide ebbs. In this way, mangroves build their own environment.