Abstract The goal of this project was to create a software system that recognizes handwritten mathematical expressions and computes the answer. No special syntax or formatting was to be required for these expressions, since a major goal of this system was for users to be able to use the system without having to learn anything new. Support was desired for algebraic expressions, integrals, and summations. The Java programming language was chosen for this project because of its ability to be used on a number of different operating systems and architectures without recompiling the source code. A graphical front end was also desired in order for the system to be more user friendly.
Table of Contents 1. Introduction....................................................................................................................................3 2. Images............................................................................................................................................4 3. Neural Network..............................................................................................................................7 4. Scanner...........................................................................................................................................9 5. Parser............................................................................................................................................10 6. GUI...............................................................................................................................................11 7. Future Work.................................................................................................................................11 8.
References: 1. Stevenson, Charles F., 1966. Neurophysiology: A Primer, John Wiley & Sons, Inc. 2. Gerald, Curtis F. and Wheatley, Patrick O., 1999. Applied Numerical Analysis, 6th Ed., Addison-Wesley 3. Russel, Stuart J. and Norvig, Peter, 2003. Articial Intelligence: A Modern Approach, 2nd Ed., Prentice Hall 4. Schalko, Robert J., 1997. Articial Neural Networks, McGraw-Hill 5. Li, Hongzing, Chen, Philip C.L. and Huang, Han-Pang, 2001. Fuzzy Neural Intelligent Systems, CRC Press LLC 6. Jang, J.-S. R., Sun, C.-T. and Mizutani, E., 1997. Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice Hall 7. Kosko, Bart, 1992. Neural Networks and Fuzzy Systems: A Dynamic Systems Approach to Machine Intelligence, Prentice Hall 8. Mammone, Richard J. and Zeevi, Yehoshua, 1991. Neural Networks: Theory and Applications, Academic Press, Inc. 9. Principe, José C., Euliano, Neil R., and Lefebvre, W. Curt, 2000. Neural and Adaptive Systems: Fundamentals Through Simulations, John Wiley & Sons, Inc. 10. Foley, James D., van Dam, Andries, Feiner, Steven K., Hughes, John F., 1996. Computer Graphics: Principles and Practice: Second Edition in C, Addison Wesley 13