Chapter one was a window that gave us a peek into the entire course. Our goal was to understand the basic structure of functions and function notation, the toolkit functions, domain and range, how to recognize and understand composition and transformations of functions and how to understand and utilize inverse functions. With these basic components in hand we will further research the specific details and intricacies of each type of function in our toolkit and use them to model the world around us.
Mathematical Modeling As we approach day to day life we often need to quantify the things around us, giving structure and numeric value to various situations. This ability to add structure enables us to make choices based on patterns we see that are weighted and systematic. With this structure in place we can model and even predict behavior to make decisions. Adding a numerical structure to a real world situation is called Mathematical Modeling.
When modeling real world scenarios, there are some common growth patterns that are regularly observed. We will devote this chapter and the rest of the book to the study of the functions used to model these growth patterns.
Section 2.1 Linear Functions 99 Section 2.2 Graphs of Linear Functions 111 Section 2.3 Modeling with Linear Functions 126 Section 2.4 Fitting Linear Models to Data 138 Section 2.5 Absolute Value Functions 146
Section 2.1 Linear Functions
As you hop into a taxicab in Las Vegas, the meter will immediately read $3.30; this is the “drop” charge made when the taximeter is activated. After that initial fee, the taximeter will add $2.40 for each mile the taxi drives[1]. In this scenario, the total taxi fare depends upon the number of miles ridden in the taxi, and we can ask whether it is possible to model this type of scenario with a function. Using descriptive variables, we choose m for miles and C for Cost in dollars as a function of miles: