Area near Dahisar River
Saika N. Esani
University of Mumbai (Email – saikae@ymail.com)
Abstract: soil samples were collected fortnightly from area near Dahisar River, A river in suburb of Mumbai. laboratory analysis started from July 2010 to September 2010. Total bacterial and fungal count were estimated by standard spread plate isolation. Isolated bacteria were subject to colony characterization and were estimated by their morphological and biochemical characters. As being a monsoon the occurrence of variation of different species were high. The microorganisms isolated from the soil were of staphylococcus strain and were gram positive, aerobic, coccus shaped bacteria. The fungal species were also identified, of which Aspergillus and Penicillium were dominant, followed by mucur, as sub dominant .This project aims to find out the water and soil quality of River and as it is flowing through an industrial area, to find out if it is getting affected by the Industrial pollutants.
Introduction:
Soil is the region on the earth’s crust where geology and biology meet, the land surface that provides a home to plant animal and microbial life (Pelczar et al., 1993). Soil teems with microscopic life (bacteria, fungi, algae, protozoa and viruses) as well as macroscopic life such as earthworms, nematodes, mites, and insects, and also the root systems of plants. The numbers and kinds of micro- organisms present in soil depend on many environmental factors: amount and type of nutrients available, available moisture, degree of aeration, pH, temperature etc (Prescott et al., 1999). Soil bacteria and fungi play pivotal roles in various biochemical cycles and are responsible for the recycling of organic compounds (Wall and Virginia, 1999). Soil microorganisms also influence above- ground ecosystems by contributing to plant nutrition, plant health, soil structure and soil fertility (O’Donnell et al., 2001).
References: 1 .Atals RM, Bartha R (1998). Microbial Ecology: Fundamentals and Applications. 4th Edition. Benjamin Cummings Publishing Company Inc. Addison Wesley Longman Inc. pp. 300 – 350. 2. Miyanoto T, Igaraslic T, Takahashi K (2002). Lignin–degradation ability of litter decomposing basidomycetes from picea forest of Hokkaida Myco.sci. (41): 105 – 110. 3. Domsch KH, Gaws W, Anderson TH (1980). Compendium of soil fungi 4 5. Pelczar MJ, Chan ECS, krieg NR (1993). Microbiology: Concept and Application International edition McGraw-Hill, USA 6. Wall DH, Virginia RA (1999). Controls on soil biodiversity insights from extreme environments. Appl. Soil Ecol. (13): 137–150. 7. Fawole and Oso, 2001 Results and tables