Using a Population Gene Pool Simulator, PopCycle
Abstract
The study of microevolution was tested in this laboratory experiment through the examination, observation, and analysis of various population conditions, some under the Hardy-Weinberg Theory of Genetic Equilibrium, which would advance the student scientists ' understanding of both microevolution and the mathematical aspects of microevolution known as population genetics. The students first predicted the result of each of the 6 cases. The data was found using a program called PopCycle (Herron 2002), which picked genotypes randomly, and showed the results after particular conditions were entered. Students took these numbers and visually displayed them in charts. They configured the predicted amount of adults for each genotype by using the Hardy-Weinberg mathematical equation p2 + 2pq + q2 to figure out the expected adults for the genotypes AA, Aa, and aa. The students also produced graphs showing allelic frequencies and genotype frequencies. They concluded that their original hypotheses were indeed correct. Therefore, there was …show more content…
Under this theory by these two popular scientists, they stated that gene pool frequencies are inherently stable, but that evolution should be expected in all populations all the time; they resolved this apparent paradox by analyzing the probable net effects of evolutionary mechanisms (O 'Neil 2002). The particular conditions that had to exist for this to apply were that the population had no mutation, had no natural selection, was a large population, had only random mating, and had no migration. For the cases to follow later in the lab, Cases 1 and 2 exemplify Hardy-Weinberg conditions. All of the others either have selection or not enough members in the population, which will be the most-closely observed