The Detailed Microstucture of Primary Materials
This report presents a study on the microstructure of 8 material samples using the proper optical microscopy techniques. Emphasis is given in sample preparation, the right use of transmitting and reflecting optical microscopy methods, and a detailed analysis of the distinct microstructure of metal, ceramic, and polymer materials. For metals and ceramics, preparation procedures include grinding, polishing, and surface treatment (etching) which may vary in different samples. Generally, for opaque materials as such, the samples are viewed in reflecting mode. In the case of polymers, samples are sliced into very thin layers for viewing in transmitting mode, due to their translucent properties to light. This technique utilizes principles in the polarization of light to obtain distinct elements of the microstructure. The microstructure of metals and ceramic binary alloys can be accurately interpreted using the information provided in their respective phase diagrams (eutectic and binary), which explains the outcome of the microstructure based on previous heat treatment and alloy composition. It has also been observed that alloys with similar composition, but prepared under dissimilar heat treatment conditions possess stark differences in grain structure and phases present. As for polymers, differences in microstructure can be attributed to their crystalline and non-crystalline properties.
I. Background of Study
The study of the microstructure of materials is of great significance as many of the final physical and mechanical properties depend on it. In this report, we narrow our focus to the different microstructures in metallic, ceramic, and polymeric materials. Because the features that exist in the material surfaces are unclearly distinguished by the unaided eye, electron and optical microscopy are generally the methods used in determining microstructure, and for our purposes, we
References: Cited Callister, W.D., Materials Science And Engineering An Introduction, 6th Ed., John Wiley and Sons, New York, 2003. Allen, S.M., and Thomas, E.L., The Structure of Materials, John Wiley and Sons, New York, 1999. Smith, W.F., Principles of Materials Science and Engineering, 2nd Ed., McGraw-Hill, 1990.