RNA: RNA is similar to DNA except that instead of deoxyribose as the sugar, it has ribose. It is single stranded, and instead of thymine, there is uracil. There are 3 forms involved in polypeptide synthesis:mRNA: Messenger RNA carries the genetic code outside the nucleus, into the cytoplasm, where it can be read by ribosomestRNA: Transfer RNA carries the amino acids to the ribosomes to link and form a polypeptide chain. tRNA are shaped like clover leaves; there is a different type for every amino acid. At the bottom of every tRNA molecule is an anti-codon that binds to the codon on the mRNA strand. That is how the amino acid is linked to the codon.…
During transcription, the information in the DNA of a specific gene is copied into mRNA (messenger RNA), which creates a nucleotide sequence. After transcription, if the DNA base sequence is 3’-TACCCTTTAGTAGCCACT-5’, then the base sequence of mRNA would be 5 '-AUGGGAAAUCAUCGGUGA-3’.…
Deoxyribose Nucleic Acid (DNA) is a polynucleotide molecule that encodes the genetic instructions used in the development and functioning of all known living organisms and many viruses. Most DNA molecules are double stranded helices, consisting of two polynucleotide strands made up of simpler molecules known as nucleotides. A nucleotide is made up of an organic nitrogenous base, a deoxyribose sugar and phosphate groups. It is order of these bases which make up the genetic code; a set of rules, by which information is encoded within genetic material.…
DNA and RNA Replication Deborah J Brooks Biochemistry (GRT1) Task 1 Western Governors University Objectives DNA Replication at Biochemical Level Role of Ligase Role of mRNA Role of RNA Polymerase Inhibition related to the death cap mushroom Introduction Nucleic acids are required for the storage and expression of genetic information. There are two chemically distinct types of nucleic acids. DNA (deoxyribonucleic acid). The repository of genetic information.…
TRANSCRIPTION: Transcription is the process of which DNA matches corresponding RNA bases, Transcription is located in the Nucleus, and the only type of RNA that is involved in Transcription is mRNA, and the purpose is so that the code can get out of the Nucleus, mRNA is also made through Transcription, It also takes information that doesn't directly make proteins but it helps makes codes for the production of proteins, DNA Transcription consist of 4 nucleotide bases, Adenine, Thymine, Cytosine, Guanine. Transcription also unwinds the strand of DNA and the RNA comes in and matches then becomes a single strand. The only thing that changes during this process is the Thymine gets replaced with Uracil.…
The DNA molecule will unwind and unzip as the hydrogen bonds between the break of the bases. RNA nucleotides pair up with the exposed bases of one of the strands and as they pair up with their pairs the sugar phosphate groups are bonded together to form the new molecule called mRNA.…
Chapter 3 Cell Function and Structure Wonder Drug j What You Will Be Learning 3.1 How Penicillin Was Discovered 3.2 Cell Theory: All Living Things Are Made of Cells 3.3 Membranes: All Cells Have Them 3.4 Prokaryotic and Eukaryotic Cells Have Different Structures 3.5 Some Antibiotics Target Bacterial Cell Walls 3.6 Some Antibiotics Inhibit Prokaryotic Ribosomes 3.7 Molecules Move across the Cell Membrane 3.8 Eukaryotic Cells Have Organelles UP CLOSE Eukaryotic Organelles 39 3620001C03.indd 39 1/27/11 10:14 AM Chapter 3 Cell Function and Structure Wonder Drug How a chance discovery in a London laboratory revolutionized medicine O n a September morning in 1928, biologist Alexander Fleming returned to his laboratory at St. Mary’s Hospital in London after a short summer vacation. As usual, the place was a mess—his bench piled high with the petri dishes on which he was growing bacteria.…
A molecule of DNA is made up of long chains of polymers and monomers called nucleotides. Those chains, two in particular that compose a strain of DNA, are formed by the grouping of nucleotides into polynucleotides. A nitrogenous base, a sugar, and a phosphate group make up the composition of a nucleotide. In the case of DNA, the four nucleotides that are found along the chain of DNA are thymine (T), cytosine (C), adenine (A), and guanine (G). Those nucleotides are joined by their covalent bonds, more specifically the sugars and phosphates which compose the sugar-phosphate backbone of the polynucleotide.…
2. Write the mRNA sequence that will be created in the process of transcription. The DNA coding strand has the information for the gene, so the strand must be transcribed. The relationships are slightly different for RNA, because RNA does not have T; therefore, U should be substituted for T. To transcribe DNA to RNA, the pairing relationship is A – U, T – A, C – G, and G – C, respectively.…
Mechanism of synthesis of DNA 11. Process of making DNA 12. Continuous synthesis of DNA 13. Enzymes that keep strands of DNA separate during DNA synthesis a. DNA Helicase b. Semiconservative c. Leading strand d. Replication 14. Process of RNA synthesis 15.…
DNA made up of units called nucleotides, nucleotides are made up of three molecules components, a nitrogen base, a sugar, and a phosphate (Simon, Reece, Dickey, 2010). The nucleotides are joined together by bonds between the sugar of one nucleotide and the phosphate of the next producing a long chain of nucleotides resulting in a sugar-phosphate backbone (Simon, Reece, Dickey, 2010) the base containing nitrogen is the only part that is variable represented by, A Adenine, C cytosine, G guanine, and T Thymine. The sugars and phosphates form the backbone of the molecule and are on the outside. The bases point inwards horizontally. The antipoarallel strands run in opposite directions and are held together by hydrogen bonds between the base pairs, these two long strands twisted and wrap around each other to form a double helix. Hydrogen bonds between bases hold the strands together; each base pairs with a complementary partner: A with T, and G with C (Simon, Reece, Dickey, 2010).…
Describe the structure of DNA.DNA is thread formed by two strands, related together to form a double helix. The double helix looks like a twisted ladder. The sides of this ladder are long unites called nucleotides and are made of three parts; a nitrogenous base, a sugar, and a phosphate group. The sides of the ladder or the nucleotides from the two separate strands of the DNA are attached by an appendage made of one of four separate bases. These appendages represent the rungs of the DNA ladder and are attached to the complimentary strand of the DNA. The bases or rungs are made of either Adenine (A) OR Thymine (T) or Cytosine (C) and Guanine (G). The attachment of the strands by the bases is specific Adenine can only join with Thymine, and Cytosine can only join with Guanine. Since this base pairing is specific, if one knows the sequence of bases a long one strand of the DNA one will also know the strand of the DNA one will also know the sequence along the complimentary strand.…
2. The Gene Theory: DNA is made up of nucleotides that contain a sequence. The sequence can be changed by mutation or crossing over.…
DNA consists of two polynucleotide chains and these nucleotides consist of a deoxyribose sugar, a nitrogenous base and a phosphate group. The bases are Adenine, Cytosine, Guanine and Thymine. The sequence of these bases on DNA determines the structure of these proteins. A gene is a sequence of bases which codes for a single polypeptide. Chromosomes carry these genes and these genes come in specific forms called an allele which is how living organisms vary from each other. For example, humans are made up of an XY or XX chromosome. Females are XX and males are XY, however in some animals their sex is determined by the ZW sex-determination…
There is something called base pairing. Each base on the DNA molecule has only one base. It will pair with a new mRNA strand. Because RNA contains nitrogenous base uracil (U) and DNA contains thymine, so whenever the DNA strand has adenine (A) the mRNA strand will have uracil (U).…