Risk analysis is part of every decision we make. We are constantly faced with uncertainty, ambiguity, and variability. And even though we have unprecedented access to information, we can’t accurately predict the future. Monte Carlo simulation (also known as the Monte Carlo Method) lets you see all the possible outcomes of your decisions and assess the impact of risk, allowing for better decision making under uncertainty
What is Monte Carlo simulation?
Monte Carlo simulation is a computerized mathematical technique that allows people to account for risk in quantitative analysis and decision making. The technique is used by professionals in such widely disparate fields as finance, project management, energy, manufacturing, engineering, research and development, insurance, oil & gas, transportation, and the environment.
Monte Carlo simulation furnishes the decision-maker with a range of possible outcomes and the probabilities they will occur for any choice of action.. It shows the extreme possibilities—the outcomes of going for broke and for the most conservative decision—along with all possible consequences for middle-of-the-road decisions.
The technique was first used by scientists working on the atom bomb; it was named for Monte Carlo, the Monaco resort town renowned for its casinos. Since its introduction in World War II, Monte Carlo simulation has been used to model a variety of physical and conceptual systems.
How Monte Carlo simulation works
Monte Carlo simulation performs risk analysis by building models of possible results by substituting a range of values—aprobability distribution—for any factor that has inherent uncertainty. It then calculates results over and over, each time using a different set of random values from the probability functions. Depending upon the number of uncertainties and the ranges specified for them, a Monte Carlo simulation could involve thousands or tens of thousands of recalculations before it is