Comparison between Direct-On-Line, Star-Delta and Auto-transformer Induction Motor Starting Method in terms of Power Quality
H.H. Goh, M.S. Looi, and B.C. Kok
Abstract—This paper presents a comparison between the Direct-On-Line (D.O.L.), Star-Delta, and Auto-transformer induction motor starting method in terms of power quality. The purpose of this research is to find out the most reliable and practical starting method which has the less power quality problems. These three basic starting methods which differ in their respective wiring connection are the most applicable and widely-used starting method in the industrial area due to its economic reasons. This research is done by analyzing the existed power quality events during the motor starting by using the Fluke Power Quality Analyzer to capture the waveforms of the events. After the experiments, the three different starting method are being compared to conclude the most suitable and applicable starting method which causes the least severe power quality events.
Index Terms— Autotransformer, D.O.L., Power quality, Star-Delta.
II. RESEARCH BACKGROUND Power Quality [3] is an issue between the compatibility of the supply systems and the loads. Probably the most widely recognized and studied effect of motor starting is the voltage dip that is experienced throughout an industrial power system as the direct result of starting large motors [4]. There are several general methods of starting induction motors: full voltage, reduced voltage, wye-delta, and part winding types. The reduced voltage type can include solid state starters, adjustable frequency drives, and autotransformers [5]. Motor starting has been investigated for decades [5-16]. The most frequent power quality events that occur are voltage sags and voltage transients as well as harmonics. Generally, voltage sags
References: [18] Chapman S.J., “Electric Machinery Fundamentals”, 4th ed., Australia: Mc Graw-Hill, 2005, pp. 380-472. [1] Dugan R.C., Mc Granaghan, Santoso S.,Beaty H.W., “ Electrical Power System Quality”, 2nd ed.,New York: Mc Graw-Hill, 2002, pp. 1-185. [2] Horvath, W.J. , “Concepts, Configurations, & Benefits of Motor Starting and Operation with MV AC Adjustable Speed Drives”, Cement Industry Technical Conference Record, 2008, pp. 258-274. [3] J.Arrillaga, N.R. Watson. S.Chen, “Power System Quality Assessment”, England: Wiley, 2000, pp. 1-62. [4] Williams, A. Jack., Griffith, M. Shan, “Evaluating the Effects of Motor Starting on Industrial and Commercial Power Systems”, IEEE Transactions on Industry Applications, 1978, Vol. IA-14, No. 4, pp. 292-305. [5] Larabee, J., Pellegrino, B., Flick, B. “Induction motor starting methods and issues”, Industry Applications Society 52nd Annual Petroleum and Chemical Industry Conference, 2005, pp.217-222. [6] John A. Kay, Richard H. Paes, J. George Seggewiss, and Robert G. Ellis, “Methods for the Control of Large Medium-Voltage Motors: Application Considerations and Guidelines”, IEEE Transactions on Industrial Applications, 2000, Vol. 36, No.6, pp. 1688-1696. ISBN: 978-988-17012-7-5 IMECS 2009