[pic]
AUTHOR: S.KALAIYARASAN M.Kumarasamy College of Engineering, Karur
A.MATHIYAZHAGAN M.Kumarasamy College of Engineering, Karur
Contact: +91-9789543609 Email ID: kalaisaravanan4@gmail.com
[pic]
INTRODUCTION
Robert A. Freitas Jr. visualizes a future "vasculoid" (vascular-like machine) that would replace human blood with some 500 trillion nanorobots distributed throughout the body’s vasculature as a coating. It could eradicate heart disease, stroke, and other vascular problems; remove parasites, bacteria, viruses, and metastasizing cancer cells to limit the spread of blood borne disease; move lymphocytes faster to improve immune response; reduce susceptibility to chemical, biochemical, and parasitic poisons; improve physical endurance and stamina; and partially protect from various accidents and other physical harm. With the availability of mature molecular nanotechnology we could replace blood with a single complex robot. This robot would duplicate all essential thermal and biochemical transport functions of the blood, including circulation of respiratory gases, glucose, hormones, cytokines, waste products, and all necessary cellular components. The device would conform to the shape of existing blood vessels. Ideally, it would replace natural blood so thoroughly that the rest of the body would remain, essentially unaffected. It is, in effect, a mechanically engineered redesign of the human circulatory system that attempts to integrate itself as an intimate personal appliance with minimal adaptation on the part of the host human body. Molecular nanotechnology has been defined as the three-dimensional positional control of molecular structure to create materials and devices to molecular precision. The human body is comprised of molecules; hence the availability of molecular nanotechnology will permit dramatic progress in human medical services. Nanomedicine will employ
References: PC quest magazine (September, 2003) ( www.hybridmedicalanimation.com ( www.foresight.com ( www.nanobot.org