Synthesis, crystal structures, and molecular hyperpolarizabilities of a new Schiff base ligand, and its copper(II), nickel(II), and cobalt(II) metal complexes
Pascal G. Lacroix a b
a,*
, Frdric Averseng a, Isabelle Malfant a, Keitaro Nakatani e e
b
Laboratoire de Chimie de Coordination du CNRS, 205 route de Narbonne, 31077 Toulouse, France PPSM, Ecole Normale Suprieure de Cachan, URA 1906, Avenue du Pdt Wilson, 94235 Cachan, France e Received 12 February 2004; accepted 6 March 2004 Available online 8 April 2004
Dedicated to Professor Tobin J. Marks for his outstanding contributions to all aspects of inorganic chemistry
Abstract A new ligand (HL) obtained from the Schiff base condensation of 4-(diethylamino)salicylaldehyde with 4-nitroaniline is reported, with its nickel(II), copper(II), and cobalt(II) complexes. The crystal structures are reported for the four derivatives. While, NiII L2 and CuII L2 are centrosymmetric molecules, CoII L2 exhibits a pseudo-tetrahedral molecular structure. The quadratic hyperpolarizabilities (b) of HL and CoII L2 , measured by electric field induced second harmonic (EFISH) technique, are equal to 66 and 110 Â 10À30 cm5 esuÀ1 , respectively. Beside a geometric effect (pseudo-Td symmetry), the coordination of the metal center provides an intrinsic enhancement of the NLO response. In addition, an enhancement of the thermal stability of about 60° is found upon metal complexation. Ó 2004 Elsevier B.V. All rights reserved.
Keywords: Schiff bases complexes; Nonlinear optics; EFISH; Semi-empirical calculations; X-ray diffraction
1. Introduction Molecular materials with quadratic nonlinear optical (NLO) properties are currently attracting considerable interest [1–8]. The quadratic hyperpolarizability (b) of a chromophore is associated with charge transfers between donor and acceptor substituents linked through p-conjugated pathways. Most NLO
References: [1] P.N. Prasad, D.J. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers, Wiley, New York, 1991. [2] J. Zyss, Molecular Nonlinear Optics: Materials, Physics, and Devices, Academic Press, New York, 1994. [3] H.S. Nalwa, S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press, New York, 1997. [4] L.R. Dalton, A.W. Harper, R. Ghosn, W.H. Steier, M. Ziari, H. Fetterman, Y. Shi, R.V. Mustacich, A.K.-Y. Jen, K.J. Shea, Chem. Mater. 7 (1995) 1060. [5] R.G. Benning, J. Mater. Chem. 5 (1995) 365. [6] D.M. Burland (Ed.), Optical Nonlinearities in Chemistry, Chem. Rev. 94(1) (1994). [7] T. Verbiest, S. Houbrechts, M. Kauranen, K. Clays, A. Persoons, J. Mater. Chem. 7 (1997) 2175. [8] J.J. Wolff, R. Wortmann, Adv. Phys. Org. Chem. 32 (1999) 121. [9] L.T. Cheng, W. Tam, S.H. Stevenson, G.R. Meredith, G. Rikken, S.R. Marder, J. Phys. Chem. 95 (1991) 10631. [10] L.T. Cheng, W. Tam, S.R. Marder, A.E. Stiegman, G. Rikken, C.W. Spangler, J. Phys. Chem. 95 (1991) 10643. [11] V. Pushkana Rao, A.K.Y. Jen, J. Chandrasekhar, I.N. Namboothiri, A. Rathna, J. Am. Chem. Soc. 118 (1996) 12443. [12] M. Blanchard-Desce, V. Alain, P.V. Bedworth, S.R. Marder, A. Fort, C. Runser, M. Barzoukas, S. Lebus, R. Wortmann, Chem. Eur. J. 3 (1997) 1091. [13] S.R. Marder, in: D.W. Bruce, D. O’Hare (Eds.), Inorganic Materials, Wiley, New York, 1997, p. 121. [14] N.J. Long, Angew. Chem., Int. Ed. Engl. 34 (1995) 21. [15] I.R. Whittall, A.M. McDonagh, M.G. Humphrey, M. Samoc, Adv. Organomet. Chem. 42 (1998) 291. [16] S.M. LeCours, H.W. Guan, S.G. DiMagno, C.H. Wang, M.J. Therien, J. Am. Chem. Soc. 118 (1996) 1497. [17] H. Lebozec, T. Renouard, Eur. J. Inorg. Chem. (2000) 229. [18] S. Di Bella, Chem. Soc. Rev. 30 (2001) 355. [19] P.G. Lacroix, Eur. J. Inorg. Chem. (2001) 339. [20] F. Cariati, U. Caruso, R. Centore, A. De Maria, M. Fusco, B. Panunzi, A. Roviello, A. Tuzi, Inorg. Chim. Acta 357 (2004) 548. [21] D.R. Kanis, M.A. Ratner, T.J. Marks, Chem. Mater. 3 (1991) 19. [22] D.R. Kanis, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 114 (1992) 10338. [23] D.R. Kanis, T.J. Marks, M.A. Ratner, Int. J. Quant. Chem. 43 (1992) 61. [24] D.R. Kanis, M.A. Ratner, T.J. Marks, Chem. Rev. 94 (1994) 195. [25] D.R. Kanis, P.G. Lacroix, M.A. Ratner, T.J. Marks, J. Am. Chem. Soc. 116 (1994) 10089. P.G. Lacroix et al. / Inorganica Chimica Acta 357 (2004) 3825–3835 [55] J.F. Nicoud, R.J. Twieg, in: D.S. Chemla, J. Zyss (Eds.), Nonlinear Optical Properties of Organic Molecules and Crystals, vol. 1, Academic Press, New York, 1987, p. 277. [56] T. Thami, P. Bassoul, M.A. Petit, J. Simon, A. Fort, M. Barzoukas, A. Villaeys, J. Am. Chem. Soc. 114 (1992) 915. [57] D.A. Kleinman, Phys. Rev. 126 (1962) 1977. 3835 [58] D.A. Kleinman, Phys. Rev. 128 (1962) 1761. [59] F. Averseng, P.G. Lacroix, I. Malfant, G. Lenoble, P. Cassoux, K. Nakatani, I. Maltey- Fanton, J.A. Delaire, A. Aukauloo, Chem. Mater. 11 (1999) 995. [60] F. Averseng, C. Lepetit, P.G. Lacroix, J.P. Tuchagues, Chem. Mater. 12 (2000) 2225. [61] J. Zyss, I. Ledoux, Chem. Rev. 94 (1994) 77.