Tables that contain redundant data can suffer from update anomalies, which can introduce inconsistencies into a database. The rules associated with the most commonly used normal forms, namely first (1NF), second (2NF), and third (3NF). The identification of various types of update anomalies such as insertion, deletion, and modification anomalies can be found when tables that break the rules of 1NF, 2NF, and 3NF and they are likely to contain redundant data and suffer from update anomalies. Normalization is a technique for producing a set of tables with desirable properties that support the requirements of a user or company. Major aim of relational database design is to group columns into tables to minimize data redundancy and reduce file storage space required by base tables. Take a look at the following example:
StdSSN S1 S1 S2 S2 StdCity SEATTLE SEATTLE BOTHELL BOTHELL StdClass JUN JUN JUN JUN OfferNo O1 O2 O3 O2 OffTerm FALL FALL SPRING FALL OffYear 2006 2006 2007 2006 EnrGrade 3.5 3.3 3.1 3.4 CourseNo C1 C2 C3 C2 CrsDesc DB VB OO VB
The insertion anomaly: Occurs when extra data beyond the desired data must be added to the database. For example, to insert a course (CourseNo), it is necessary to know a student (StdSSN) and offering (OfferNo) because the combination of StdSSN and OfferNo is the primary key. Remember that a row cannot exist with NULL values for part of its primary key. The update anomaly: Occurs when it is necessary to change multiple rows to modify ONLY a single fact. For example, if we change the StdClass of student S1 (JUN), two rows, row 1 and 2 must be changed. If S1 was enrolled in 10 classes, 10 rows must be changed. The deletion anomaly: Occurs whenever deleting a row inadvertently causes other data to be deleted. For example, if we delete the enrollment (EnrGrade) of S2 in O3 (third row), we lose the information about offering O3 and course C3 because these values are unique