Exercise 1.1.1
103
102
101
100
1000
100
10
1
2
9
3
1
2000
+900
+30
+1
Decimal # 2931
Exercise 1.1.2
22
21
20
4
2
1
1
1
0
4
+2
0
Decimal # 6
Binary # 1102
Exercise 1.1.3
21
20
2
1
1
1
2
+1
Binary # 112
Decimal # 3
Exercise 1.1.4
24
23
22
21
20
16
8
4
2
1
1
0
0
1
0
16
0
0
+2
0
Decimal # 18
Binary# 100102
Exercise 1.1.5
27
26
25
24
23
22
21
20
128
64
32
16
8
4
2
1
1
1
1
0
0
0
1
0
128
+64
+32
0
0
0
+2
0
Binary# 111000102
Decimal# 226
Exercise 1.1.6
156
28
12
4
27
26
25
24
23
22
21
20
128
64
32
16
8
4
2
1
1
0
0
1
1
1
0
0
128
0
0
+16
+8
+4
0
0
Decimal# 156
Binary# 10011100
Exercise 1.1.7
255
127
63
31
15
7
3
1
27
26
25
24
23
22
21
20
128
64
32
16
8
4
2
1
1
1
1
1
1
1
1
1
128
+64
+32
+16
+8
+4
+2
+1
Decimal# 255
Binary# 11111111
Exercise 1.1.8
200
72
8
27
26
25
24
23
22
21
20
128
64
32
16
8
4
2
1
1
1
0
0
1
0
0
0
128
+64
0
0
+8
0
0
0
Decimal# 200
Binary# 11001000
Exercise 1.1.9
Exercise1.1.10
Exercise 1.1.11
Exercise 1.1.12
Lab 1.1 Reviews
1.) Write out the powers starting from 20 to 26. Next place the values of the powers below. In each block below enter a one subtract that value from the number 127 until you have nothing remaining and all values equal 127.
2.) The values 102 and 00102 are equal because the zero are not equal to anything in the beginning of the equation.
3.) The first four digits in the base 5 would be 1,5,25,125
4.) It would be more difficult because you would be doing more than adding the values together to equal your decimal number it would include multiplying and a more complicated formula.
Unit Lab1.2
Exercise 1.2.1
1
1
0
1
0
0
1
1
1
1
1
=15
Exercise 1.2.2
1
1
0
1
0
1
1
0
1
1
=11
Exercise 1.2.3
1
1
1