A nuclear reactor is a device to initiate and control a sustained nuclear chain reaction. Nuclear reactors are used at nuclear power plants for electricity generation and in propulsion of ships. Heat from nuclear fission is passed to a working fluid (water or gas), which runs through turbines. These either drive a ship's propellers or turn electrical generators. Nuclear generated steam in principle can be used for industrial process heat or for district heating. Some reactors are used to produce isotopes for medical and industrial use, or for production of plutonium for weapons. Some are run only for research. Today there are about 450 nuclear power reactors that are used to generate electricity in about 30 countries around the world.
Types of nuclear reactor:
Uranium–fuelled Reactors
The only natural element currently used for nuclear fission in reactors is uranium. Natural uranium is a highly energetic substance: one kilogram of it can generate as much energy as 10 tons of oil. Naturally occurring uranium comprises, almost entirely, two isotopes: U238 (99.283%) and U235 (0.711%). The former is not fissionable while the latter can be fissioned by thermal (i.e. slow) neutrons. As the neutrons emitted in a fission reaction are fast, reactors using U235 as fuel must have a means of slowing down these neutrons before they escape from the fuel. This function is performed by what is called a moderator, which, in the case of certain reactors (see table of Reactor Types below) simultaneously acts as a coolant. It is common practice to classify power reactors according to the nature of the coolant and the moderator plus, as the need may arise, other design characteristics.
PWRs and BWRs are the most commonly operated reactors in Organization for Economic Cooperation and Development (OECD) countries. VVERs, designed in the former Soviet Union, are based on the same principles as PWRs. They use “light water”, i.e. regular water (H2O) as opposed to “heavy