Proceedings of the Institution of Civil Engineers http://dx.doi.org/10.1680/geng.11.00094 Paper 1100094 Received 09/10/2011 Accepted 04/04/2012 Keywords: dynamics/mathematical modelling/piles & piling
ICE Publishing: All rights reserved
Numerical study of ground vibration due to impact pile driving
1 j Ali Khoubani MSc 2 j Mohammad Mehdi Ahmadi PhD
Senior Geotechnical Engineer, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
Associate Professor, Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
1 j
2 j
Ground vibration due to pile driving is a long-lasting concern associated with the foundation construction industry. It is of great importance to estimate the level of vibration prior to the beginning of pile driving, to avoid structural damage, or disturbance of building occupants. In this study, an axisymmetric finite-element model that utilises an adaptive meshing algorithm has been introduced, using the commercial code Abaqus, to simulate full penetration of the pile from the ground surface to the desired depth by applying successive hammer impacts. The model has been verified by comparing the computed particle velocities with those measured in the field. The results indicate that the peak particle velocity at the ground surface does not occur when the pile toe is on the ground surface; as the pile penetrates into the ground, the particle velocity reaches a maximum value at a critical depth of penetration. Some sensitivity analyses have been performed to evaluate the effect of soil, pile and hammer properties on the level of vibrations. The results show that increase in pile diameter, hammer impact force, soil–pile friction and reduction in soil elastic modulus can increase the peak particle velocity.
Notation
D d E e L Lmin p r VP VR VS Æ â ˜t ¨ ì í r ô ôcrit ö pile
References: Ahmadi MM, Byrne PM and Campanella RG (2005) Cone tip resistance in sand: modelling, verification, and applications. Canadian Geotechnical Journal 42(4): 977–993. Deeks AJ and Randolph MF (1993) Analytical modelling of hammer impact for pile driving. International Journal for Numerical and Analytical Methods in Geomechanics 17(5): 279–302. Dowding CH (1996) Construction Vibrations. Prentice Hall, Upper Saddle River, NJ, USA. Goble GC, Rausche F and Likinis GE (1980) The analysis of pile driving: a state-of-the-art. Proceedings of the 1st International Seminar on the Application of Stress-Wave Theory on Piles, Stockholm, Sweden, pp. 131–161. Hibbitt D, Karlsson B and Sorensen P (2010) Abaqus User’s Manual, version 6.10. Hibbitt, Karlsson & Sorensen Inc., Providence, RI, USA Kulhawy F (1991) Drilled shaft foundations. In Foundation Engineering Handbook (Fang HY (ed.)), 2nd edn. Van Nostrand Reinhold, New York, NY, USA, pp. 537–552. Madheswaran CK, Natarajan K, Sundaravadivelu R and Boominathan A (2009) Effect of trenches on attenuation of ground vibration during pile driving. In Vibration Problems ICOVP-2007 (Unan E, Sengupta D, Banerjee MM, Mukhopadhyay B and Demiray H (eds)). Springer Proceedings in Physics, vol. 126. Springer, Dordrecht, the Netherlands, pp. 231–238. Madheswaran CK, Sundaravadivelu R, Boominathan A and Natarajan K (2005) Response of ground during pile driving. Theory to Piles (Niyama S and Beim J (eds)). Balkema, Rotterdam, The Netherlands, pp. 495–502. Selby AR (2002) Computation of ground waves due to vibrodriving of piles. Proceedings of the 8th International Symposium on Numerical Models in Geomechanics, Rome, Italy, pp. 353–357. Serdaroglu MS (2010) Nonlinear Analysis of Pile Driving and Ground Vibrations in Saturated Cohesive Soils Using the Finite Element Method. PhD dissertation, University of Iowa, Iowa City, IA USA. Sheng D, Eigenbrod KD and Wriggers P (2005) Finite element analysis of pile installation using large-slip frictional contact. Computers and Geotechnics 32(1): 17–26. Thandavamoorthy TS (2004) Piling in fine and medium sand: a case study of ground and pile vibration. Soil Dynamics and Earthquake Engineering 24(4): 295–304. Uromeihy A (1990) Ground Vibration Measurements with Special Reference to Pile Driving. PhD thesis, Durham University, Durham, UK. van den Berg P (1994) Analysis of Soil Penetration. PhD thesis, Delft University of Technology, Delft, the Netherlands. Wiss JF (1981) Construction vibrations: state-of-the-art. Journal of Geotechnical Engineering, ASCE 107(2):167–181. Woods RD and Jedele PL (1985) Energy attenuation relationships from vibrations. Proceedings of the ASCE Convention on Vibration Problems in Geotechnical Engineering, Detroit, TX, USA, pp. 229–246. Woods RD and Sharma VM (2004) Dynamic Effects of Pile Installations on Adjacent Structures, international edition. Balkema, Rotterdam, the Netherlands. Journal of the Institution of Engineers (India), Civil Engineering Division 86(May): 22–27. Masoumi HR, Degrande G and Lombaert G (2007) Prediction of free field vibrations due to pile driving using a dynamic soil– structure interaction formulation. Soil Dynamics and Earthquake Engineering 27(2): 126–143. Masoumi HR, Francois S and Degrande G (2009) A non-linear coupled finite-element–boundary element model for the prediction of vibrations due to vibratory and impact pile driving. International Journal for Numerical and Analytical Methods in Geomechanics 33(2): 245–274. Massarsch KR and Fellenius BH (2008) Ground vibrations induced by impact pile driving. Proceedings of the 6th International Conference on Case Histories in Geotechnical Engineering, Arlington, VA, USA. ´ Menetrey Ph and Willam KJ (1995) Triaxial failure criterion for concrete and its generalization. ACI Structural Journal 92(3): 311–318. Pan JL and Selby AR (2002) Simulation of dynamic compaction of loose granular soils. Advances in Engineering Software 33(7–10): 631–640. Ramshaw CL, Selby AR and Bettes AR (2000) Computation of ground waves due to piling. In Application of Stress Wave 12 WH AT DO YO U T HI NK? To discuss this paper, please email up to 500 words to the editor at journals@ice.org.uk. Your contribution will be forwarded to the author(s) for a reply and, if considered appropriate by the editorial panel, will be published as a discussion in a future issue of the journal. Proceedings journals rely entirely on contributions sent in by civil engineering professionals, academics and students. Papers should be 2000–5000 words long (briefing papers should be 1000–2000 words long), with adequate illustrations and references. You can submit your paper online via www.icevirtuallibrary.com/content/journals, where you will also find detailed author guidelines.