Carnot Cycle
We start discussing the well-known Carnot cycle in its refrigeration mode.
Figure 1: Carnot Cycle
In this cycle we define the coefficient of performance as follows:
COP =
qL
TL
= w TH − TL
(1)
Which comes from the fact that w = qH − qL (first law) and qL = TL Δs , qH = TH Δs (second law). Note that w is also given by the area of the rectangle.
Temperature differences make the COP vary. For example, the next figure shows how COP varies with TL (TH is ambient in this case) and the temperature difference in exchangers.
56
Figure 2: COP changes with heat exchanger temperature approximation and TL (TH=ambient)
We now turn our attention to a real one stage refrigeration cycle, depicted in the next figure.
Figure 3: Typical one-stage dry refrigeration Cycle
We notice that:
-
To be able to achieve the best match possible with the rectangular shape it is necessary to operate inside the two phase region.
Compression is in this example performed outside the two phase region. Creating a
“horn”, which is not thermodynamically advisable, is mechanically better. For this reason, this cycle is called “dry” cycle. A “wet” cycle is shown in the next figure.
57
Figure 4: Wet refrigeration Cycle
-
The expander has been substituted by a throttling valve. If an expander had been used the line from d to a would be a vertical line. This is also done for mechanical reasons. The refrigeration cycles can also be represented in a P-H diagram.
Figure 5: P-H diagram representation of a dry refrigeration cycle
Refrigerant fluid choice: We now turn our attention to the fluids. Usually, one tends to pick pL as low as possible, but not below atmospheric pressure. Thus, the refrigerant chosen needs to have a normal boiling point compatible with the lowest temperature of the cycle (usually 10oC lower than the system one wants to cool). The higher pressure needs to be compatible with the cooling media used for qH. If this is cooling water, then the TH needs to be around 10oC higher than the available cooling water temperature. The next table shows the existing refrigerants. It is followed by the boiling temperature and rang of selected refrigerants.
58
Table 2-1: Refrigerants
59
Table 2-1: Refrigerants Continued)
60
Table 2-1: Refrigerants Continued)
61
Figure 2-6: Temperature Ranges of Refrigerants
We now turn to Pro II to show how a refrigerant cycle is built.
We start with entering the cycle as follows:
62
We pick R12, which will allow us to cool down anything to
Next we define the outlet pressure of the compressor. This needs to be such that stream C (after the cooler) is higher than 60 oF. To start we choose around 85 psia.
Next we define the top heat exchanger, by specifying an outlet temperature slightly below the bubble point.
63
We continue by specifying the duty of the bottom exchanger. This is customary because this is the targeted design goal of the cycle.
64
We enter the outlet pressure of the valve (atmospheric).
65
We also realize that this flowsheet does not have input or output streams. Thus, to start the simulation, one needs to give an initial value to a stream. We chose stream D, and initialize with a flowrate that is guessed.
66
If the flowrate chosen is too high, then the inlet of the compressor will be two phase and this is not advisable. If the flowrate is too low, the cycle will loose efficiency (the “horn” will get larger). Warning: Pro II may not realize internally that it needs to solve the unit that the initialized stream feeds to and try to continue until it reaches convergence in the loop but it will loose the input data. To avoid problems we specify the order in which we want the flowsheet to solve by clicking in the unit sequence button.
67
Construct the simulation above described and determine the right flowrate in the cycle.
Determine all temperatures and obtain the COP. Compare it with a Carnot Cycle.
The above exercise can be done automatically using a “controller”, which is a type of “spec and vary” equivalent to “Goal Seek” in Excel. Once the controller is picked, double clicking on it reveals the menu.
68
Thus, we choose to have the inlet to the compressor just slightly above dew point
(specification) and we vary the flowrate, just as we did by hand. It is, however, easier to specify a very low liquid fraction. Make sure the starting point is close to the right value.
Sometimes the controller has a hard time converging.
69
70
You May Also Find These Documents Helpful
-
A refrigerator operates on the ideal vapor compression refrigeration cycle with R-134a as the working fluid between the pressure limits of…
- 613 Words
- 3 Pages
Good Essays -
2. Take Beaker 1 and fill it ¾ full with refrigerated water (12 degrees Celsius).…
- 702 Words
- 3 Pages
Good Essays -
| A 147.9-L sample of dry air is cooled from 88.0°C to 22.1°C while the pressure is maintained at 2.85 atm.…
- 1086 Words
- 5 Pages
Satisfactory Essays -
7. How should you heat the liquid in a test tube to a temperature less than 100 C?…
- 400 Words
- 2 Pages
Satisfactory Essays -
The refrigeration system can be defined as a closed system in which the process of absorbing and rejecting heat is performed by flowing a refrigerant in a vapor compression cycle. In its simplest form, the refrigeration system consists of five components: the compressor, condenser, evaporator, expansion device, and interconnecting piping.…
- 830 Words
- 4 Pages
Good Essays -
°C, this is called H2 testing condition (previously H1, tested at 7 °C). This data is submitted to…
- 1241 Words
- 5 Pages
Powerful Essays -
• Do not overstock the refrigerator as this will affect the airflow around the food.…
- 1815 Words
- 8 Pages
Powerful Essays -
J for ice, 2.02 J for steam, g°C g°C J for liquid 4.18 g°C 2.05…
- 1618 Words
- 7 Pages
Satisfactory Essays -
What happens when you increase the 3rd dew point dot 10°C (move it to the right)?…
- 415 Words
- 2 Pages
Satisfactory Essays -
In light of the global procurement of components and the changing landscape of centralized information but decentralized decision-making, explain how you would advise Maytag Refrigerators on operational best practices using the two concepts we discussed in class. Explain in detail and provide your solutions to the aspects.…
- 3308 Words
- 14 Pages
Better Essays -
b. Phase our the compression chiller line and convert capacity to absorption chillers to meet the growing market.…
- 470 Words
- 2 Pages
Satisfactory Essays -
between 37° C and 38° C even if the external temperature varies between 16° C and 54° C.…
- 2783 Words
- 12 Pages
Better Essays -
Purpose: Use experimental techniques to record temperature and volume data for known and unknown compounds. The liquid and gas are going to be at equilibrium. We will also determine the boiling point for the known and unknown. Then use a graph to calculate the slope and then use Clasius- Clapeyron equation to find the heat vaporization.…
- 351 Words
- 2 Pages
Satisfactory Essays -
has been created with 1/3 inch thick, systematic lines that form the cubistic shaping of…
- 915 Words
- 4 Pages
Good Essays -
ChotuKool falls in to the business of refrigeration, to understand the business better let us understand the overall refrigeration business…
- 2868 Words
- 12 Pages
Powerful Essays