CRS Report for Congress
Received through the CRS Web
Data Mining: An Overview
Updated December 16, 2004
Jeffrey W. Seifert Analyst in Information Science and Technology Policy Resources, Science, and Industry Division
Congressional Research Service ˜ The Library of Congress
Data Mining: An Overview
Summary
Data mining is emerging as one of the key features of many homeland security initiatives. Often used as a means for detecting fraud, assessing risk, and product retailing, data mining involves the use of data analysis tools to discover previously unknown, valid patterns and relationships in large data sets. In the context of homeland security, data mining is often viewed as a potential means to identify terrorist activities, such as money transfers and communications, and to identify and track individual terrorists themselves, such as through travel and immigration records. While data mining represents a significant advance in the type of analytical tools currently available, there are limitations to its capability. One limitation is that although data mining can help reveal patterns and relationships, it does not tell the user the value or significance of these patterns. These types of determinations must be made by the user. A second limitation is that while data mining can identify connections between behaviors and/or variables, it does not necessarily identify a causal relationship. To be successful, data mining still requires skilled technical and analytical specialists who can structure the analysis and interpret the output that is created. Data mining is becoming increasingly common in both the private and public sectors. Industries such as banking, insurance, medicine, and retailing commonly use data mining to reduce costs, enhance research, and increase sales. In the public sector, data mining applications initially were used as a means to detect fraud and waste, but have grown to also be used for purposes such as