Parasitic Drag/Skin Friction
-------------------------------------------------
-------------------------------------------------
Parasitic drag is drag caused by moving a solid object through a fluid medium (in the case of aerodynamics, more specifically, a gaseous medium). Parasitic drag is made up of many components, the most prominent being form drag.Skin friction and interference drag are also major components of parasitic drag.
-------------------------------------------------
In aviation, induced drag tends to be greater at lower speeds because a high angle of attack is required to maintain lift, creating more drag. However, as speed increases the induced drag becomes much less, but parasitic drag increases because the fluid is flowing faster around protruding objects increasing friction or drag. At even higher transonic andsupersonic speeds, wave drag enters the picture. Each of these forms of drag changes in proportion to the others based on speed. The combined overall drag curve therefore shows a minimum at some airspeed - an aircraft flying at this speed will be at or close to its optimal efficiency. Pilots will use this speed to maximize the gliding range in case of an engine failure. However, to maximize the gliding endurance, the aircraft's speed would have to be at the point of minimum power, which occurs at lower speeds than minimum drag. At the point of minimum drag, CD,o (drag coefficient of aircraft when lift equals zero) is equal to CD,i (induced drag coefficient, or coefficient of drag created by lift). At the point of minimum power, CD,o is equal to one third times CD,i. This can be proven by deriving the following equations:
-------------------------------------------------
------------------------------------------------- and -------------------------------------------------
-------------------------------------------------
where