ABSTRACT The amount of time spent waiting at a public transport station is a key element in a passenger’s assessment of service quality and in mode choice decisions. Many transport models estimate the average wait time is half the headway for small headways and use a maximum waiting time for headways over a given value. The assumption is that at small headways passengers do not bother to consult schedules since vehicles arrive frequently; therefore these passengers arrive regularly at the station. In contrast, at longer headways passengers do consult schedules to reduce their waiting time; these passengers arrive clustered around the departure time. This research evaluated the influence of headway and other factors on passenger arrival rates at public transport stations based on data collected at 28 stations in Zurich’s public transport network. It found that even at 5-minute headways, some passengers consulted schedules and did not arrive randomly at the station. This finding is interesting since 5-minutes is much lower than many models assume, therefore these models may be overstating passenger wait time. The research also found time-of-day and reliability had an important influence on passenger arrival rates. The research proposes a model for passenger arrival rates at stations that combines a uniform distribution with a shifted Johnson SB distribution.
Luethi, M., U. Weidmann and A. Nash
2
PASSENGER ARRIVAL RATES AT PUBLIC TRANSPORT STATIONS 1. INTRODUCTION Passenger arrival rates at public transport stations are important for two main reasons. First, passenger arrival rates determine
References: 1. Stoveken P. Real Time Pre-Trip Passenger Information via Mobile Phone – Experiments from Practice, In: Proceedings of the 8th World Congress on Intelligent Transportation Systems, Sydney, ITS America, 2001. 2. Hoyer R. and O. Czogalla. Approach to personalized services to public transport, In: Proceedings of the 9th World Congress on Intelligent Transportation Systems, Chicago, ITS America, 2002. Luethi, M., U. Weidmann and A. Nash 12 3. Maclean S. D. and D. J. Dailey. Wireless Internet Access to Real-Time Transit Information, Transportation Research Record 1791, 2002, pp. 92-98. 4. Weber W. Die Reisezeit der Fahrgäste öffentlicher Verkehrsmittel in Abhängigkeit von Bahnart und Raumlage, Technische Hochschule Stuttgart, 1966. 5. O’Flaherty C. A. and D. O. Mangan. Bus Passenger Waiting Times in Central Areas, Traffic Engineering and Control, January 1970, pp. 419-421. 6. Seddon P. A. and M. P. Day. Bus passenger waiting times in Greater Manchester, Traffic Engineering and Control, Januar 1974, pp. 442-445. 7. Jolliffe J. K. and T. P. Hutchinson. A Behavioural Explanation of the Association Between Bus and Passenger Arrivals at a Bus Stop, Transporation Science, Vol. 9, 1975, pp. 248-282. 8. Braendli, H. and H. Mueller. Fahrplanabhängigkeit des Fahrgastzuflusses zu Haltestellen, Institute for Transport Planning and Systems, Report No. 81/5, Swiss Federal Institute of technology Zurich, 1981. 9. Walter, K. and M. Norta. Der Einfluss der Wartezeit auf die ÖPNV-Qualität. DER NAHVERKEHR, Vol. 7/8, 2002, pp. 36-38. 10. Dartmap is showing real-time location of all running DARTs (suburban train service) in the city of Dublin. http://dartmaps.mackers.com/. Accessed July 18, 2006. 11. TrainCheck: online service providing actual timetable information for mobile phones http://www.traincheck.com/. Accessed July 18, 2006.