Wireless and RF
Keywords: tutorial, QPSK, modulation, modulator, demodulator, demodulation
May 01, 2002
APPLICATION NOTE 686
QPSK modulation demystified
Abstract: Readers are presented with step-by-step derivations showing the operation of QPSK modulation and demodulation. The transition from analog communication to digital has advanced the use of QPSK. Euler's relation is used to assist analysis of multiplication of sine and cosine signals. A SPICE simulation is used to illustrate QPSK modulation of a 1MHz sine wave. A phasor diagram shows the impact of poor synchronization with the local oscillator. Digital processing is used to remove phase and frequency errors. Since the early days of electronics, as advances in technology were taking place, the boundaries of both local and global communication began eroding, resulting in a world that is smaller and hence more easily accessible for the sharing of knowledge and information. The pioneering work by Bell and Marconi formed the cornerstone of the information age that exists today and paved the way for the future of telecommunications. Traditionally, local communication was done over wires, as this presented a cost-effective way of ensuring a reliable transfer of information. However, for long-distance communications, transmission of information over radio waves was needed. Although this was convenient from a hardware standpoint, radio-waves transmission raised doubts about the corruption of the information; transmission was often dependent on high-power transmitters to overcome weather conditions, large buildings, and interference from other sources of electromagnetics. The various modulation techniques offered different solutions in terms of cost-effectiveness and quality of received signals but until recently were still largely analog. Frequency modulation and phase modulation presented a certain immunity to noise, whereas amplitude