x =?vt
?v = (v + vo)/2
v = vo + at
x = vot + ½at2
v2 = vo2 + 2ax
y =?vt
?v ’ ½(vo + v)
v = vo – gt
y = vot – ½gt2
v2= vo2 – 2gy
R = (v02/g)sin(2θ)
Forces
Fnet = ma Fgravity = mg
Ffriction ≤ μsN Ffriction = μkN
Circular Motion
Fnet = mv2/r ac = v2/r
v = 2πr/T
f = 1/T T = 1/f
Gravitation
F = GM1M2/R2 g = GM/R2
T2/R3 = 4π2/GM = constant
GM = Rv2
Energy
W = Fdcosθ KE = ½mv2
PE = mgh PE = ½kx2
PE0 + KE0 + W = PE + KE
P = W/t = E/t = Fv
Momentum
p = mv
ptot = p1 + p2 + …
ptot before = ptot after
FΔt = Δp = mv – mv0
xcm = (m1x1 + m2x2 + …)/(m1 + m2 + …)
vcm = (m1v1 + m2v2 + …)/(m1 + m2 + …)
Rotational Motion
θ ’ ?ωt ω = (ωo + ω)/2
ω ’ ωο + αt θ ’ ωοt + ½αt2
ω2 ’ ωο2 + 2αθ
s = rθ v = r ω atan = rα
τ = r x F
Ι ’ Σmr2 Ιparallel = ICM + md2
Στ ’ Ια L ’ Ιω
Στ ’ dL/dt L = r x p
ΚΕ ’ ½Ιω2
Bodies in Equilibrium
Στ ’ 0 ΣF ’ 0
Harmonic Motion
F = -kx PE = ½kx2
½kx2 + ½mv2 = ½kA2 = ½mvmax2
x(t) = Asin(ωt) v(t) = Aω cos(ωt) a(t) = -Aω2 sin(ωt)
ω = (k/m)1/2
x(t) = A cos(ωt) v(t) = -Aω sin(ωt) a(t) = -Aω2 cos(ωt)
T = 2π(m/k) 1/2
T = 2π(L/g)1/2
f= 1/T T = 1/f
Waves
v = fλ
Ι ’ P/(4πr2)
│d1 – d2│ = 0, λ, 2λ, 3λ ....
│d1 – d2│ = λ/2, 3λ/2, 5λ/2 ....
v = (T/(m/L))½
f1 = v/2L λ1 = 2L fn = nf1 λn = λ1/n n = 1, 2, 3, …..
Sound
β ’ 10log(1012Ι)
vsound = 331 + .6T(0C)
f = f0(v±v0)/(v±vs)
f1 = v/2L λ1 = 2L fn = nf1 λn = λ1/n n = 1, 2, 3, …..
f1 = v/4L λ1 = 4L fn = nf1 λn = λ1/n n = 1, 3, 5, ….
fB = │f1 – f2│
sinθ = vsound / vobject
Electrostatics
F = QE F = kQ1Q2/r2
E = kQ/r2
ΔPE = QΔV PE = kQ1Q2/r
V = kQ/r ΔV = EΔx
C= Q/V C = ε0A/d
C = κC0 E = Q/(ε0A)
U = ½QV = ½CV2 =½Q2/C
u= ½ε0E2