The city of Mapleland, Oregon, which owns and operates its own power utility, built a fiber-optic network to monitor power meters at residents’ homes. The network is called Mapleland Fiber Network (MFN). Because MFN had more capacity than was needed to monitor meters, the city expanded its services to offer access to the network for citybusinesses. The businesses use the network to communicate with each other and to access the Internet. At the MFN headend, which is located with the city government offices, three routers and WAN links connect to the Internet for use by the city. The businesses on MFN also use these routers to reach the Internet.
In addition to the business service, MFN also offers cable modem service to homes. A cable modem router at the MFN headend connects to the fiber-optic network. In the city neighborhoods, hybrid fiber-coax nodes bring coax cabling to each street and into the homes for cable modem Internet access.
The MFN backbone consists of a fiber-optic Gigabit Ethernet network that runs through the city in a ring topology. The fiber-optic ring connects the hybrid fiber-coax nodes that bring coax cabling to each neighborhood. Also connected to the ring are six data routers. Each router links one or more Mapleland businesses to MFN via simple point-to-point connections. At the business, the fiber-optic network enters the building and connects to a media converter. A UTP cable connects to the media converter and typically to a 100-Mbps Ethernet switch. The switch links the business’s computers and servers in a star opology via UTP cabling.
1. Draw a network map that shows the topology of the MFN and how the main components are connected.
2. What other information would you gather to improve your map and add more detail?
3. Mapleland is considering expanding the MFN to include wireless access for its residences. What additional investigation will you do to prepare for a citywide wireless network?
4. What security