Preview

Pso Paralellization

Powerful Essays
Open Document
Open Document
928 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Pso Paralellization
Noname manuscript No. (will be inserted by the editor)

PSO Algorithm for the Traveling Salesman and Other Optimization Problems.
An OpenMp Implementation
Santiago Garcia Carbajal · Fiona Reid · David Corne

Received: date / Accepted: date

Abstract Particle Swarm Optimization is a general purpose optimization method due to Kennedy, Eberhart and Shi. It works by maintaining a swarm of particles moving around the search space influenced by the observed improvements of the other particles. The main advantage of the method is that it does not use the gradient of the function to be optimized, what makes it suitable for problems where the gradient is impossible to derive or expensive in terms of CPU requirement. The performance of the proposed algorithm is tested on a standard problem. Keywords First keyword · Second keyword · More
S. Garcia Computer Science Department University of Oviedo Campus de Viesques Office 1.b.15 33206, Gijon Asturias Spain Tel.: +34-985-182487 Fax: +34-985-182156 E-mail: sgarcia@uniovi.es F. Reid Edinburgh Parallel Computing Centre Edinburgh Sotland Tel.: +44(0) 131-451-3410 Fax: +44(0)-131-650-6555 E-mail: fiona@epcc.ed.ac.uk D. Corne Heriot Watt University Edinburgh Sotland E-mail: dwcorne@macs.hw.ac.uk

2

Santiago Garcia Carbajal et al.

1 Introduction. PSO Kennedy & Eberhart (1995) proposed this bio-inspired PSO approach, which can be seen as a population-based optimization algorithm that performs a parallel search on a space of solutions. As an optimization algorithm, the purpose of the individuals in PSO is to find out the best position when they move through the problem space. These individuals in PSO, called particles, are initialized by a randomized velocity and position at the beginning of optimization, and then change their velocities and positions under the companions influence. In the optimization context, several solutions of a given problem constitute a population, called The Swarm. Each solution is seen as a social

You May Also Find These Documents Helpful

  • Satisfactory Essays

    Prg420 Syllabus

    • 1691 Words
    • 7 Pages

    Yelick, K., Hilfinger, P., Graham, S., Bonachea, D., Su, J., Kamil, A., et al. (2007, fall). Parallel languages and compilers: Perspective from the Titanium experience. International Journal of High Performance Computing Applications, 21(3), 266.…

    • 1691 Words
    • 7 Pages
    Satisfactory Essays
  • Better Essays

    Schneider, G.M. & Gersting, J.L., (2013). Invitation to Computer Science. (6th ed.). Boston, Ma: press…

    • 2002 Words
    • 9 Pages
    Better Essays
  • Best Essays

    [3] Larranaga, Pedro, et al. "Genetic algorithms for the travelling salesman problem: A review of representations and operators." Artificial Intelligence Review 13(2 )(1999): 129-170.…

    • 4745 Words
    • 19 Pages
    Best Essays
  • Powerful Essays

    References: Aarts, E.H.L., Korst, J.H.M. and Laarhoven, P.J.M. van. (1997). Simulated annealing. Pages 91– 120 in: Local Search in Combinatorial Optimization (E.H.L. Aarts, and J.K.L. Lenstra, Eds.) John Wiley & Sons, New York. Anderson, C. and McShea, D.W. Individual versus social complexity, with particular reference to ant colonies. Biol. Rev. (Camb), in press. Appleby, S. and Steward, S. (1994). Mobile software agents for control in telecommunications networks. BT Technol. J. 12: 104–113. Bartholdi, J. J., III. (1993) Interactive program to balance assembly lines. Int. J. Prod. Res. 31: 2447–2461. Bartholdi, J.J., III and Eisenstein, D.D. (1996). A production line that balances itself. Oper. Res. 44: 21–34. Bartholdi, J. J., III, Bunimovich, L.A. and Eisenstein, D.D. (1999). Dynamics of two- and threeworker "bucket brigade" production lines. Oper. Res. 47: 488–491. Bartholdi, J. J., III, Eisenstein, D.D. and Foley, R. A. Performance of bucket brigades when work is stochastic. Oper. Res., in press. Beebe, W. (1921). Edge of the Jungle. Henry Holt and Company, New York. Bonabeau, E. (1998). Social insect colonies as complex adaptive systems. Ecosystems 1: 437– 443. Bonabeau, E., and Théraulaz, G. (2000). Swarm smarts. Sci. Am. 282: 72–79. Bonabeau, E., Dorigo, M. and Théraulaz, G., 1999. Swarm Intelligence: From Natural to Artificial Systems. Santa Fe Institute on the Sciences of Complexity. Oxford University Press, New York. Bonabeau, E., Dorigo, M. and Théraulaz, G. (2000). Inspiration for optimization from social insect behaviour. Nature 406: 39–42.…

    • 8717 Words
    • 35 Pages
    Powerful Essays
  • Good Essays

    Many researchers have been done but the current research focus has led to the invention of many optimization issues and finding of many new solution approaches. In broad sense, Optimization issues basically include logistics, disease diagnosis, and preventive care of patients, service planning and resource scheduling.…

    • 523 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    The search starts with creating a random population of grey wolves (candidate solutions) in the GWO algorithm. During the iterations, α, β, and δ estimate the probable position of the prey. Then Each candidate solution updates its position from the prey accordingly. The parameter a is decreased from 2 to 0 in order to emphasize exploration and exploitation, respectively. Candidate solutions diverge from the prey if |A| > 1 and converge towards the prey if |A| < 1. Finally, the GWO algorithm is terminated by the satisfaction of an end…

    • 575 Words
    • 3 Pages
    Satisfactory Essays
  • Satisfactory Essays

    The war

    • 1240 Words
    • 5 Pages

    B.A. in Mathematics, Reed College, 1971. M.Sc. 1974, Ph.D. 1979, in Computer Science, Stanford University. Fulbright Senior Scholar Award (1997); Fellow of the Association Computing Machinery, 2001.…

    • 1240 Words
    • 5 Pages
    Satisfactory Essays
  • Good Essays

    Netscape Ipo Summary

    • 1171 Words
    • 5 Pages

    At the University of Illinois at Urbana-Champaign, a group of computer science students working at the National Center for Supercomputing Applications (NCSA) developed the…

    • 1171 Words
    • 5 Pages
    Good Essays
  • Powerful Essays

    al. in [3]. To improve the performance of the SFL algorithm, a chaos search is combined with SFL by Li, et al. in [4]. In [5], a new frog leaping rule is introduced and the direction and the length of each frog’s jump are extended by emulating frog’s perception and action uncertainties. Zhen, et al. in [6], introduced a new leaping rule as well as giving a new way for dividing the population. To overcome the difficulties with the SFL, in this paper, a modified SFL (MSFL) is presented by increasing the local search ability of the algorithm. The issue of exploration and exploitation is taken into account by a frog leaping rule for local search and a mimetic shuffling rule for global information exchange. To show the effectiveness of the proposed algorithm, MSFL is tested on economic dispatch (ED) problem which is one of the most important problems to be solved in the operation and planning of a power system [7]. The primary objective of ED problem is to determine the optimal combination of power outputs of all generating units so that the required load demand at minimum operating cost is met while satisfying system equality and inequality constraints. In the traditional ED problem, the cost function for each generator has been approximately represented by a single quadratic function and is solved using mathematical programming based on the optimization techniques such as lambda-iteration method, gradient method, and dynamic programming method, etc. However many mathematical assumptions such as convex, quadratic, differentiable and linear objectives and constraints are required to simplify the problem. The practical ED problem with ramp rate limits, prohibited operating zones, valvepoint effects and multi-fuel options is represented as a non-smooth or nonconvex optimization problem with equality and…

    • 5963 Words
    • 24 Pages
    Powerful Essays
  • Powerful Essays

    Recent developments in optimization techniques that deals in finding the solution of combinatorial optimization problems has provided engineering designers new capabilities. These new optimization algorithms are called metaheuristic techniques and they use nature as a source of inspiration to develop new numerical optimization procedures. It is shown in the literature that these techniques are robust and efficient and their performance is not affected by the complexity of optimization problems. In last two decades several metaheuristic algorithms are developed that mimic natural phenomena. Among these evolutionary algorithms imitate evolutionary biology and make use of the principle of the survival of the fittest to establish a numerical search algorithm. Swarm intelligence is based on the collective behaviour of insect swarm, bird flocking or fish schooling. Particle swarm optimizer turns this collective behaviour of particles into a numerical optimization algorithm. Differential evolution is a method that optimizes a problem by iteratively trying to improve a candidate solution with regard to a given measure of quality. Harmony search method mimics the musical performance process that takes place when a musician searches for a better state of harmony. Big Bang-Big Crunch method simulates the theory of evolution of the universe. Artificial bee colony algorithm is based on the intelligent behaviour of honey bee swarm. Fireflies communicate, search for pray and find mates using bioluminescence with varied flashing patterns. Firefly algorithm mimics the social behaviour of fireflies. Cuckoo search algorithm…

    • 15059 Words
    • 61 Pages
    Powerful Essays
  • Good Essays

    James S. Plank Department of Computer Science University of Tennessee 203 Claxton Complex Knoxville, TN 37996 plank@cs.utk.edu 865-974-4397…

    • 7154 Words
    • 29 Pages
    Good Essays
  • Good Essays

    Travelling Salesman Problem

    • 3162 Words
    • 13 Pages

    Rina Refianti dan A.Benny Mutiara Jurusan Teknik Informatika, Universitas Gunadarma Abstraksi Ant Colony System (ACS) adalah sebuah metodologi yang dihasilkan melalui pengamatan terhadap semut. Di dalam ACS terdapat sejumlah semut buatan, dinamai ants, yang berfungsi sebagai agent yang ditugaskan untuk mencari solusi terhadap suatu masalah optimisasi. ACS telah diterapkan dalam berbagai bidang, salah satunya adalah untuk mencari solusi optimal pada Traveling Salesman Problem (TSP). Dengan memberikan sejumlah n kota, TSP dapat didefinisikan sebagai suatu permasalahan dalam menemukan jalur terpendek dengan mengunjungi setiap kota yang ada hanya sekali. ACS telah diuji dan dibandingkan dengan metodologi yang lain untuk membuktikan keoptimalannya tersebut. Dan hal inilah yang menjadi dasar bagi penulis dalam melakukan penelitian terhadap ACS, yaitu untuk membuktikan keoptimalannya tersebut. Penelitian ini dilakukan dengan mengimplementasikan ACS ke dalam bentuk kode-kode program berbahasa Java. Kemudian dilakukan percobaan untuk membandingkan antara ACS dengan metodologi lainnya yang juga meng-implementasikan agent di dalamnya. Dari hasil percobaan diketahui bahwa secara garis besar ACS terbukti merupakan metodologi yang paling optimal dalam menemukan jalur terpendek. Dan penelitian ini telah berhasil membuktikan keoptimalan dari ACS dalam menemukan solusi terhadap TSP. Keyword: Genetic Algorithm, Ant System, Software Agent, Pheromone, state transition rule 1. Pengantar Salah rekayasa satu paradigma lunak baru dalam dapat dihindari akan dibutuhkannya lebih dari satu agent, seiring dengan semakin kompleksnya tugas yang dikerjakan oleh sistem tersebut. Paradigma pengembangan sistem di mana dalam suatu komunitas terdapat beberapa agent yang saling berinteraksi, bernegosiasi, dan berkoordinasi satu sama lain dalam menjalankan pekerjaan disebut dengan Multi Agent System (MAS) [Romi]. Colony M. Dan…

    • 3162 Words
    • 13 Pages
    Good Essays
  • Good Essays

    [KSW04] K IPFER P., S EGAL M., W ESTERMANN R.: Uberflow: A GPU-based particle engine. In Proc. ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware (2004), pp. 115–122.…

    • 7820 Words
    • 32 Pages
    Good Essays
  • Best Essays

    Buzz Technology

    • 2467 Words
    • 10 Pages

    M. Bani Yassein, A. Al-zou'bi, Y. Khamayseh, W. Mardini Department of Computing Science, Jordan University of Science and Technology E-mail: {masadeh@just.edu.jo, a_zo3bi@yahoo.com, yaser@just.edu.jo, mardini@just.edu.jo } doi: 10.4156/jdcta.vol3.issue2.yassein…

    • 2467 Words
    • 10 Pages
    Best Essays
  • Powerful Essays

    Semantic Reranking

    • 3055 Words
    • 13 Pages

    Department of Computer Sciences UFSCar - Federal University of São Carlos Rod. Washington Luís, Km 235 Caixa Postal 676 13565-905 / São Carlos – SP – Brazil Phone/Fax:(55 16) 260-8232 Abstract…

    • 3055 Words
    • 13 Pages
    Powerful Essays

Related Topics