A minimization problem with four decision variables, two greater-than-or-equal-to constraints, and one equality constraint will have…
Linear programming problems have a.|linear objective functions, non-linear constraints.| b.|non-linear objective functions, non-linear constraints.| c.|non-linear objective functions, linear constraints.| d.|linear objective functions, linear constraints.| ____C 7. The first step in formulating a linear programming problem is a.|Identify any upper or lower bounds on the decision variables.| b.|State the constraints as linear combinations of the decision variables.| c.|Understand the problem.| d.|Identify the decision variables.| e.|State the objective…
Julia Robertson is considering renting a food booth at her school. She is seeking ways to finance her last year and thought that a food booth outside her school’s stadium would be ideal. Her goal is to earn the most money possible thereby increasing her earnings. In this case problem, she decided to sell pizza, hotdogs and BBQ sandwiches. The following LP model illustrates the maximum net profit and constraints that will determine whether or not to least the booth.…
1. Consider the following linear programming problem: Maximize Z = 400 x + 100y Subject to 8 x + 10y ≤ 80 2 x + 6y ≤ 36 x≤ 6 x, y ≥ 0…
If constraints are added to an LP model the feasible solution space will generally decrease…
A. Julia Robertson is making an allowance for renting a food booth at her school. She is seeking ways to finance her last year and believed that a food booth outside her school’s stadium would be ideal. Her goal is to earn the most money possible thus increasing her earnings. In this case problem, she decided to sell pizza, hotdogs and BBQ sandwiches. The following LP model illustrates the maximum net profit and constraints that will determine whether or not to least the boot.…
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.…
7. When using linear programming model to solve the “diet” problem, the objective is generally to maximize profit.…
1. For a linear programming problem, assume that a given resource has not been fully used. In other words, the slack value associated with that resource constraint is positive. We can conclude that the shadow price associated with that constraint:…
Question 1 Graphical solution (16 marks) For a linear programming model given below: Decision variables x1 Units of product 1 to produce. x2 – Units of product 2 to produce. Objective function Maximize 4.0x1 + 3.6x2 Constraints Constraint 1: 11x1 + 5x2 > 55 Constraint 2: 3x1 + 4x2 < 36 Constraint 3: 4x1 – 9x2 < 0 Nonnegativity: x1, x2 >= 0 Solve this linear programming model by using the graphical approach (Graph paper is provided on the next page). For your graphical solution, Label the axes. Draw and label each constraint. Show your procedure of drawing Constraint 3 only. For each constraint line, determine and label which side is feasible. Briefly explain how to determine the feasible side for Constraint 3 only. Shade and label the feasible region. Identify all feasible corner points and determine the coordinates of each feasible corner point. Show only your calculations for the corner point determined by Constraints 1 and 2. Determine the optimal solution and objective function value. For all calculations in this question, please…
Time allowed: 2 hours Attempt four questions. All questions carry equal marks. In all questions, you may assume that all functions f (x1 , . . . , xn ) under consideration are sufficiently ∂2f ∂2f continuous to satisfy Young’s theorem: fxi xj = fxj xi or ∂xi ∂xj = ∂xj ∂xi . The following abbreviations, consistent with those used in the course, are used throughout for commonly occurring optimisation terminology: LPM – leading principal minor; PM – (non-leading) principal minor; CQ – constraint qualification; FOC – first-order conditions; NDCQ – non-degenerate constraint qualification; CSC – complementary slackness condition; NNC – non-negativity constraint.…
Q1) 39) A linear programming problem that aims to minimize cost, has two constraints 2X + 4Y ≥ 100 and 1X + 8Y ≤ 100. Which of the following statements about its feasible region is true? (2-points)…
In linear programming, if there are three constraints, each representing a resource that can be used up, the optimal solution must use up all of each of the three resources.…
After analyzing your data, you are now prepared to present your findings to the company CEO. Discuss ten quality management improvement initiatives you would recommend, including quality tools to improve company poor performance.…
Students cannot choose EDUC 219, EDUC 227, ECON 213, STAT 201, STAT 210, STAT 234, ITEC 242,…