TRANSPORTATION PROBLEMS
63.1 INTRODUCTION
A scooter production company produces scooters at the units situated at various places (called origins) and supplies them to the places where the depot (called destination) are situated.
Here the availability as well as requirements of the various depots are finite and constitute the limited resources.
This type of problem is known as distribution or transportation problem in which the key idea is to minimize the cost or the time of transportation.
In previous lessons we have considered a number of specific linear programming problems. Transportation problems are also linear programming problems and can be solved by simplex method but because of practical significance the transportation problems are of special interest and it is tedious to solve them through simplex method. Is there any alternative method to solve such problems?
63.2 OBJECTIVES
After completion of this lesson you will be able to: s olve the transportation problems by
(i) North-West corner rule;
(ii) Lowest cost entry method; and
(iii)Vogel’s approximation method. t est the optimality of the solution.
112 :: Mathematics
63.3 MATHEMATICAL
FORMULATION
TRANSPORTATION PROBLEM
OF
Let there be three units, producing scooter, say, A 1 , A 2 a nd
A 3 f rom where the scooters are to be supplied to four depots say
B 1, B 2, B3 a nd B 4.
Let the number of scooters produced at A1 , A 2 a nd A 3 b e a1, a2 a nd a3 r espectively and the demands at the depots be b 2 , b 1, b 3 a nd b 4 r espectively.
We assume the condition a1+ a2 + a3 = b 1 + b 2 + b 3 + b 4
i.e., all scooters produced are supplied to the different depots.
Let the cost of transportation of one scooter from A1 t o B 1 b e c 11. Similarly, the cost of transportations in other casus are also shown in the figure and 63.1 Table 1.
Let out of a1 s cooters available at A 1, x 11 b e taken at B 1 depot, x12 b e taken at B 2 d epot and to other depots as