In this paper, we attempt to explain some of these fantastic notions for the layman. This paper comes with a warning, but also with some good news. The good news is that you don't need to be majoring in physics or take several weeks in a course to learn about this. What physics students spend most of their time learning is a set of mathematical tools for doing calculations. We are not going to get into the math at all here, but just present some basic experimental results and the ideas developed to interpret them. The warning is that it's not going to be easy. We are going to introduce some of the most conceptually difficult ideas in science, and we're going to cover several weeks worth of college physics. You might go through the whole paper once fairly quickly, but don't necessarily expect to get the whole thing in one sitting. Try reading it in stages and stopping when you feel you've got enough to chew on. After ruminating for a while come back and try the next bit. The main point is not to expect to get everything instantly, but just to relax and give yourself time to think and absorb it all. And—hopefully—to enjoy it!
Overview—Where we're going
Before we start, here is a brief "road map" of where we're going.
The first sections are all explanations of "classical" Physics: that is, the understanding of the 19th century world, before the introduction of quantum mechanics. These provide a critical background for understanding the 20th century changes. Don't skip or skim them "to jump to the good stuff" because without this background, the good stuff won't make any