Preview

Radical Bromination Lab Report

Satisfactory Essays
Open Document
Open Document
106 Words
Grammar
Grammar
Plagiarism
Plagiarism
Writing
Writing
Score
Score
Radical Bromination Lab Report
Radical Bromination demonstrates the process of halogenation – where a halogen replaces a hydrogen in a molecule. Mechanism starts by breaking the bromine bonds by heat/light, forming radical halogen (initiation). The bromine radical then breaks a C-H bond on the molecule, forming a benzylic radical, and that same radical then attacks Br2 to regenerate bromine radical. Termination will then occur when the concentration of Bromine runs low. NBS is also used in this experiment to keep the bromine concentration low.
Elimination reaction is performed with a strong base and heat. This takes away the bromine that was synthesized and giving back the original molecule at hand.

You May Also Find These Documents Helpful

  • Satisfactory Essays

    Mechanism 4 shows the debromination of 2α-bromocholestan-3-one to give 4. This mechanism which is similar to a Favoskii rearrangement, is likely to go via this path as other research has shown that there is often a by-product with this reaction. The by-product is cholest-4-en-3-one which requires the intermediate seen in the third molecule in the above mechanism. The intermediate is highly strained and with the presence of base a proton will be extracted which aids the collapse of the three membered ring. To gain the major product, 4, the H1 proton is removed, however it is very possible that the H4 proton is removed instead which would leave the minor product of cholest-4-en-3-one. Both products result in conjugation which will stabilise the molecule. The mechanism for this step is unlikely to go via a simple elimination as for an elimination the eliminated products must be trans to each other for facile leaving. As the bromine is equatorial in both the chair and the boat conformation the bromine is trans with neither of the hydrogens which shows this type of elimination is unlikely to occur. The other possibility is that the acidic hydrogen that is removed in the first step is not H4, but H2. This…

    • 372 Words
    • 2 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Chem 1211K Lab Report

    • 1855 Words
    • 18 Pages

    The identification of the melting point of the organic acid was done to find another characteristic of the acid and to test the purity of the recrystallized pure acid. A 2-4 mm layer of unknown sample was placed into a capillary tube sealed on one end. Then the capillary tube was inserted into the side a Bibby Sterlin device. The plateau was set to 200°C on the melting point apparatus. Once the plateau temperature was reached, the sample was watched carefully. When the sample first began to melt and when it was fully melted was recorded. These numbers were the range of the melting point. A slow melting point of the unknown organic acid and a standard sample was completed next. A new plateau was set about 10°C lower than the observed melting point of the unknown sample. This time once the plateau was reached, the heating was no more than 1°C per minute. This gave a much more accurate read of both melting points. If the standard did not melt in the range listed on the label of the bottle, that meant the machine was not working properly. The standard sample and the unknown organic acid melted in their appropriate ranges.…

    • 1855 Words
    • 18 Pages
    Satisfactory Essays
  • Satisfactory Essays

    Chemistry 116 lab review

    • 289 Words
    • 2 Pages

    The first step is to calibrate the colorimeter with0.20 M Fe(NO3)3and set the absorbance at 470 nm since it is known to keep an acidic solution throughout the entirety of the experiment. It was important to do this right at the beginning of the lab since the zeroed value of the acid was the calibration number for all of the other solutions. A total of seven solutions with different dilutions were used throughout the lab to conduct the equilibrium constant. The first step was adding 5 mL of 0.200 M Fe(NO3)3to each of the 5 test tubes. Once this was done, 0.00200 M NCS was added to the test tubes, each receiving a different amount; test tube one received 1 mL NCS-and with each test tube the amount of NCS-would increase by 1 mL, test tube 5 received 5 mL of NCS. . The next step was adding HNO3 to each test tube in different volumes; Test tube one received 10 mL of HNO3 and with each test tube the amount of HNO3 decreased by 1 mL, test tube five had no HNO3 added to it. The addition of these solutions formed five test tubes of different dilutions, but of equal volume, 10 mL each. After all of the previous trials had been completed the final step was to take each test tube and pour it into a different cuvette and measure the absorbance for each. Once the initial concentration was calculated of Fe3+, NCS and FeNCS2+ in molarity. The absorbency values were recorded and used to calculate the formation constant, K f The reference table containing volumes used in each solution is provided below…

    • 289 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    The final compound which I am going to look at is 4-aminobenzenecarboxylic acid. The compound is also known as 4-Aminobenzoic acid. The molecular and structural formula of the compound is C7H7NO2 which means that the compound consists of seven carbon atoms attached to seven hydrogen atoms along with one nitrogen atom and two carbon atoms attached as a carbon-oxygen double bond. The displayed formula for the 4-aminobenzenecarboxylic acid compound is shown and it shows the formula in a ring form therefore means that the compound is an aromatic compound. This is an aromatic compound because the compound consists of six carbons of benzene joined in a ring, having the planar geometry of a regular hexagon in which the distance between all of the C-C bonds are equal.…

    • 652 Words
    • 3 Pages
    Good Essays
  • Good Essays

    Lab for Chemistry 221

    • 612 Words
    • 3 Pages

    Abstract: A 50mL (we used 100mL) volumetric flask was used to determine the amount of sugar in a can of Coke per mL in 5 different solutions. Using the calibration curve we determine the amount of sugar per mL in a can of coke. This experiment concluded that there is 43.83g of sugar in a 12oz can of Coke.…

    • 612 Words
    • 3 Pages
    Good Essays
  • Satisfactory Essays

    The typical reagents that are used, such as elemental bromine and liquid bromine, are dangerous and highly corrosive, so this experiment used an alternative method of bromination.…

    • 312 Words
    • 2 Pages
    Satisfactory Essays
  • Good Essays

    This initial reaction is called the initiation step of the mechanism. Once the high-energy chlorine free radicals are formed, the energy source (UV light or heat) can be removed. The energy liberated in the reaction of the free radicals with other atoms is sufficient to keep the reaction running.…

    • 1325 Words
    • 6 Pages
    Good Essays
  • Better Essays

    chem lab report

    • 1425 Words
    • 7 Pages

    2. To determine the densities of water, an unknown liquid, a rubber stopper, and an unknown rectangular solid.…

    • 1425 Words
    • 7 Pages
    Better Essays
  • Powerful Essays

    Comment on the regioselectivity of the bromination of acetanilide (assign regiochemistry of bromo product - ortho/meta/para, why selective?)…

    • 1196 Words
    • 5 Pages
    Powerful Essays
  • Satisfactory Essays

    Quiz010: Lab Report

    • 929 Words
    • 4 Pages

    | LabRepQuiz010 Question MC #7: Which of the following is the best written sentence that includes the information below taken from an article written by Dr. Costanza, but avoids plagiarism?…

    • 929 Words
    • 4 Pages
    Satisfactory Essays
  • Satisfactory Essays

    LAB 3 Report

    • 737 Words
    • 5 Pages

    A. Create a solubility curve for NH4Cl by plotting g NH4Cl/100 mL H20 on the y-axis, and crystallization temperature on the x-axis. Make sure to label each axis. On the same graph as the solubility curve for NH4Cl, add the solubility curve for NaCl using the data provided in Data Table 3.…

    • 737 Words
    • 5 Pages
    Satisfactory Essays
  • Powerful Essays

    Chem Lab Report

    • 1164 Words
    • 5 Pages

    .2400 grams of the unknown compound. This is done in duplicate and purple-tinted precipitates are placed in Gooch crucibles. The precipitates are suction dried using ethyl alcohol then acetone to…

    • 1164 Words
    • 5 Pages
    Powerful Essays
  • Good Essays

    Bis 102 Lab Report

    • 757 Words
    • 4 Pages

    Enzymes encompass our lives by carrying out various processes that have both negative and positive effects on our bodies, and the aging of our skin is no exception. In BIS 102, Dr. Monfared emphasizes the importance of enzymes and its varied functions that make biological processes achievable. As a result, these biological catalysts allow life to take place by reducing the activation energy needed for chemical processes, such as the breakdown of sugars and proteins. While a majority of the catalyzed reactions are beneficial for our wellbeing, others are disadvantageous especially in older age. As individuals progressively age, enzymes do more than just carry out necessary reactions; they also start to degrade various regions of our body, one…

    • 757 Words
    • 4 Pages
    Good Essays
  • Satisfactory Essays

    Gas Chromatography Lab

    • 648 Words
    • 3 Pages

    The dehydrobromination reactions of 1- and 2-Bromobutane with potassium tert-butoxide occur through an E2 mechanism. In the dehydrobromination of 1-bromobutane, potassium tert-butoxide, a strong base, deprotonates the beta carbon while bromine leaves, forming a monosubstituted alkene. Because the leaving group, bromine, in 1-bromobutane is located on the first carbon, the formation of a disubstituted alkene is not possible, which is why the gas chromatogram for this reaction should only have one peak, suggesting only one product is formed. The case is not the same in the reaction of 2-bromobutane with potassium tert-butoxide. In 2-bromobutane, the leaving group is attatched to the second carbon. This allows potassium tert-butoxide to deprotonate either the number one carbon, which results in a monosubstituted alkene (1-butene), or the number three carbon, which results in a disubstituted alkene that is either cis or trans (trans-2-butene or cis-2-butene). Due to the “bulkiness” of potassium tert-butoxide, it is easier for potassium tert-butoxide to deprotonate carbon one on 2-butanol than it is for it to deprotonate carbon three because carbon three is located between two other carbons. For this reason, the gas chromatogram from this reaction should…

    • 648 Words
    • 3 Pages
    Satisfactory Essays
  • Satisfactory Essays

    This experiment involved the addition of trans-cinnamic acid to bromine for the production of 2,3-dibromo-3-phenylpropanoic acid. This process depicted an electrophilic addition of a halogen to an asymmetrically substituted alkene. A result of this process was the presence of a stereospecific bromonium ion formed by the mechanism of the reaction.…

    • 428 Words
    • 2 Pages
    Satisfactory Essays