von der Fakult¨ t IV - Elektrotechnik und Informatik a der Technischen Universit¨ t Berlin a zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing. -
genehmigte Dissertation
Promotionsausschuss: Vorsitzender Berichter Berichter : Prof. Dr.-Ing. Klaus Petermann : Prof. Dr.-Ing. Adam Wolisz : Prof. Dr.-Ing. Ralf Lehnert
Tag der wissenschaftliche Aussprache: 4. Oktober 2005
Berlin 2005 D 83
To the memory of my father
Abstract
To meet the explosive demands of high-capacity and broadband wireless access, modern cell-based wireless networks have trends, i.e., continuous increase in the number of cells and utilzation of higher frequency bands. It leads to a large amount of base stations (BSs) to be deployed; therefore, cost-effective BS development is a key to success in the market. In order to reduce the system cost, radio over fiber (RoF) technology has been proposed since it provides functionally simple BSs that are interconnected to a central control station (CS) via an optical fiber. It has the following main features: (1) it is transparent to bandwidth or modulation techniques, (2) simple and small BSs, (3) centralized operation is possible. Extensive research efforts have been devoted to the development of physical layer such as simple BS development and radio signal transport techniques over fiber, but few have been reported about upper layer and resource management issues for RoF networks. In this dissertation, we are concerned with RoF based network architecture that makes efficient use of its centralized control capability to address mobility management and bandwidth allocation. This work consists of three parts. In the first study, we consider RoF based wireless local area network (WLAN) operating at 60 GHz bands, which can provide high capacity wireless access; however, due to high propagation and penetration