Simple Random Sampling: In this sampling technique, each sample of the same size has the same probability of being selected. Such a sample is called a simple random sample. One way to select a simple random sample is by a lottery or drawing. For example, if we need to select 5 students from a class of 50, we write each of the 50 names on a separate piece of paper. Then, we place all 50 names in a hat and mix them thoroughly. Next, we draw 1 name randomly from the hat. We repeat this experiment four more times. The 5 drawn names make up a simple random sample. The second procedure to select a simple random sample is to use a table of random numbers, which has become an outdated procedure. In this age of technology, it is much easier to use a statistical package, such as Minitab, to select a simple random sample.
Systematic Random Sampling: The simple random sampling procedure becomes very tedious if the size of the population is large. For example, if we need to select 150 households from a list of 45,000, it is very time consuming either to write the 45,000 names on pieces of paper or then select 150 households or to use a table of random numbers. In such cases, it is more convenient to use systematic random sampling.
Stratified Random Sampling: Suppose we need to select a sample from the population of a city, and we want households with different income levels to be proportionately represented in the sample. In this case, instead of selecting a simple random sample or a systematic random sample, we may prefer to apply a different technique. First, we divide the whole population into different groups based on income levels. Thus, whenever we observe that a population differs widely in the possession of a characteristic, we may prefer to divide it into different strata and then select one sample from each stratum. We can divide the population on the basis of any characteristic,