PART DEPOSITION PLANNING
Pulak M. Pandey
Department of Mechanical Engineering
Indian Institute of Technology Delhi
Email: pmpandey@mech.iitd.ac.in
1. INTRODUCTION
Prototyping or model making is one of the important steps to finalize a product design. It helps in conceptualization of a design. Before the start of full production a prototype is usually fabricated and tested. Manual prototyping by a skilled craftsman has been an ageold practice for many centuries. Second phase of prototyping started around mid-1970s, when a soft prototype modeled by 3D curves and surfaces could be stressed in virtual environment, simulated and tested with exact material and other properties. Third and the latest trend of prototyping, i.e., Rapid Prototyping (RP) by layer-by-layer material deposition, started during early 1980s with the enormous growth in Computer Aided
Design and Manufacturing (CAD/CAM) technologies when almost unambiguous solid models with knitted information of edges and surfaces could define a product and also manufacture it by CNC machining. The historical development of RP and related technologies is presented in table 1.
Year of inception
1770
1946
1952
1960
1961
1963
1988
Technology
Mechanization
First computer
First Numerical Control (NC) machine tool
First commercial laser
First commercial Robot
First interactive graphics system (early version of Computer
Aided Design)
First commercial Rapid Prototyping system
Table 1: Historical development of Rapid Prototyping and related technologies
(after Chua and Leong, 2000)
2. BASIC PRINCIPLE OF RAPID PROTOTYPING PROCESSES
RP process belong to the generative (or additive) production processes unlike subtractive or forming processes such as lathing, milling, grinding or coining etc. in which form is shaped by material removal or plastic deformation. In all commercial RP processes, the part is fabricated by deposition of layers
References: Chua, C.K., Leong, K.F. (2000) Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific. Gebhardt, A., (2003) Rapid Prototyping, Hanser Gardner Publications, Inc., Cincinnati. Pandey, P.M., Reddy N.V., Dhande, S.G. (2003a) Slicing Procedures in Layered Manufacturing: A Review, Rapid Prototyping Journal, 9(5), pp Pandey, P.M., Reddy, N.V., Dhande, S.G. (2003b) Real Time Adaptive Slicing for Fused Deposition Modelling, International Journal of Machine Tools and Manufacture, Pandey, P.M., Reddy, N.V., Dhande, S.G. (2004a) Part Deposition Orientation Studies in Layered Manufacturing, Proceeding of International Conference on Advanced Pandey, P.M., Thrimurthullu, K., Reddy, N.V. (2004b) Optimal Part Deposition Orientation in FDM using Multi-Criteria GA, International Journal of Production Research, 42(19), pp. 4069-4089. Pham, D.T., Dimov, S.S. (2001) Rapid Manufacturing, Springer-Verlag London Limited. Singhal, S.K., Pandey, A.P., Pandey, P.M., Nagpal, A.K. (2005) Optimum Part Deposition Orientation in Stereolithography, Computer Aided Design and Applications, 2 Thrimurthullu, K., Pandey, P.M., Reddy, N.V. (2004) Part Deposition Orientation in Fused Deposition Modeling, International Journal of Machine Tools and Manufacture, Williams, R.E., Komaragiri., S.N., Melton, V.L., Bishu, R.R. (1996) Investigation of the Effect of Various Build Methods on the Performance of Rapid Prototyping