Objective
To purify benzoic acid by recrystallization and gain experience with a basic organic laboratory techniques.
Background
Products of chemical reactions are often contaminated with impurities. One method for purifying chemicals, recrystallization, takes advantage of the differences in the solubilities of the desired products and the impurities and the tendency for the slow formation of crystals to exclude impurities from the crystalline solid.
HC HC HC CH C CH MgBr + CO2 + HCl HC HC HC CH C CH CO2H ClMgBr
Benzoic acid, the chemical that we will be purifying, can be made by reacting phenylmagnesium bromide with carbon dioxide. When the product of that reaction is treated with hydrochloric acid, benzoic acid is formed. From the balanced chemical equation, it is clear that the benzoic acid will not be pure since the byproduct MgClBr, an ionic solid, forms at the same time the desired product forms. Benzoic acid can be separated from ionic solids because the materials have different solubilities in water. At room temperature, benzoic acid is not particularly soluble in water, whereas ionic solids like MgClBr are. Thus, adding water to the crude reaction products will dissolve the ionic solid, and nearly all of the benzoic acid will remain undissolved. If the suspension were filtered, much of the impurity would be washed away; however, the resulting product wouldn’t be as pure as a recrystallized product. To take advantage of the extra purity garnered by crystallization, all of the benzoic acid must be dissolved. On the other hand, the benzoic acid needs to come back out of solution to crystallize. Simply adding room-temperature water cannot accomplish this goal; once the benzoic acid is dissolved there would be no reason for it crystallize. Since benzoic acid is much more soluble in hot water as compared to cold, small amounts of hot water are added to dissolve the benzoic acid. If the hot, saturated, aqueous solution