The purpose of this investigation is to figure out how temperature, pH, and enzyme concentration affect the reaction rate of an enzyme. It’s important to understand how certain factors affect enzymes because of their crucial role in the metabolic processes of life. Enzymes lower the activation energy necessary for a chemical reaction to occur, allowing vital processes such as digestion, ATP production, and DNA replication to occur efficiently. Using a Vernier Gas Pressure Sensor the rate of reaction of the enzyme catalase as it decomposed Hydrogen Peroxide in a test tube was measured and then results were put on the screen of a Macintosh computer using Logger Pro software and Vernier computer software. Several trials were then done with one factor, either temperature, pH, or enzyme concentration being altered, while the remaining two stayed constant. The rate of reaction of catalase should increase with enzyme concentration until a certain point until it reaches its limit. For temperature the rate of reaction of catalase should increase until the enzyme catalase denatures, and then after the rate should start to decrease. When exposed to different pH levels the rate of reaction of catalase should increase as the enzyme catalase reaches its optimal pH level, once it’s at that point the rate of reaction should then decrease as the pH level goes farther away from catalase’s optimal pH level. The data for the trials of pH and enzyme concentration support the expected hypotheses of how the reaction rate would be affected, however the data did not support the hypothesis made for the effects of temperature on an enzyme’s reaction rate due to divergent data from the expected results. (need this line or is conclusion and results of data and trends summarized with data supported hypotheses) ask if titel too long,,…