To begin, the various costs incurred to SDS should be grouped into either variable, or fixed. The only variable costs that have any relation to the total revenue hours listed from exhibit 2 are “power” and “Operations: hourly personnel.” Other expenses listed are fixed costs.
Now, we have our data to calculate unit variable cost per revenue hour. | January | February | March | Power | 1546 | 1485 | 1697 | Operations: hourly personnel | 7896 | 7584 | 8664 | Total Variable Cost | 9442 | 9069 | 10361 | Total Revenue Hours | 329 | 316 | 361 | Variable Costs per revenue hour | $ 28.70 | $ 28.70 | $ 28.70 |
The “contribution margin” income statement for SDS therefore is,
Break even analysis: Based on the assumptions above, the number of commercial revenue hours needed to break even is as follows:
(205 * 400 + x *800) -28.7 * (205+x) – 212939=0
82000 + 800x - 5884 - 28.7x - 212939=0
X = 212939 – 82000 + 5884 = 177.39 800-28.7
SDS needs to serve roughly 178 commercial hours to break even.
What if analysis: if commercial price is increased to $1000, the demand reduces
30%. The resulting effect on net income will be:
X = 138 * (1-0.3) = 97
(205 * 400 + 97 * 1000) – 28.7 – (205+97) – 212939 = ($42,606)
If commercial price is reduced to $600, the demand increases
30%. The resulting effect on net income will be:
X = 138 * (1+.03) = 180
(205 * 400 + 180 * 600) – 28.7 – (205+180) – 212939 = ($33,989)
Increased promotion would increase revenue hours by up to 30%
How much could be spent and still leave SDS with no reported losses each month?
X = 138 * (1+.03) = 180