Risk and uncertainty are central to forecasting and prediction; it is generally considered good practice to indicate the degree of uncertainty attaching to forecasts. In any case, the data must be up to date in order for the forecast to be as accurate as possible.
Although quantitative analysis can be very precise, it is not always appropriate. Some experts in the field of forecasting have advised against the use of mean square error to compare forecasting methods.
Forecasting involves the use of information at hand to make statements about the likely course of future events. In technical terms, conditional on what one knows, what can one say about the future? Forecasting techniques include uni-variant, multi-variant, and qualitative analysis. Time series used to forecast future trends include exponential smoothing, ARIMA (Autoregressive Integrated Moving Average) and trend analysis. Multi-variant prediction methods include multi regression model, econometrics, and state space. Delphi marketing research, situational analysis, and historical analogue belong to qualitative methodologies. These forecasting methods forecast trends over different time horizons. There are significant differences in time length being