In this paper, I will analyze the following argument in terms of validity and soundness: An argument is a syllogism only if it is valid. An argument has a true conclusion, if it is valid. If an argument has consistent premises, then it has a true conclusion. Thus, if an argument is a syllogism, then it has a true conclusion.
As we shall soon learn, this argument is valid but unsound.
I begin my analysis by providing a dictionary and putting the argument in standard logical form. Here is my dictionary. Let ‘S’ stand for ‘an argument is a syllogism’ Let ‘V’ stand for ‘an argument is valid’ Let ‘C’ stand for ‘an argument has a true conclusion’ Let ‘P’ stand for the premises are consistent’ Here is the argument in standard logical form. S→V P→C V→C S→C
This argument is valid. My proof for validity can be found in my appendix at the end of the paper. [And no, I am not going to provide an appendix for a sample paper].
Now that we know that the argument is valid, let us examine each statement in the argument. The first premise is S→V. This states that if an argument is a syllogism, then it is valid. This is false. An argument could be a syllogism yet be invalid. A syllogism is an argument that has two premises and a conclusion; but such an argument can be valid or invalid. Some poodles are dogs Some elephants are not dogs No elephants are poodles
This argument is a syllogism yet it still has an invalid form. [No, you don’t have to prove the form is invalid; but you better be correct]
The second premise is P→C. This states that if the premises are consistent, then the argument