Have you ever wondered how antibiotics and other medicines are able to stop dangerous infections? How do such medications kill microorganisms without in general harming the person the microorganisms are infecting? Because many different types of microorganisms can infect us, we have had to develop an amazing number of ways to deal with these harmful microbes. Fungal infections can be particularly dangerous, but we have developed many different antifungal medications that can usually deal with these infections. But how do antifungal medications work, and how effective are they? In this science project, we will test how well different common antifungal medications can stop the growth of baker's yeast, a harmless variety of fungus often used in baking.
Problem/ Objective : Determine how different antifungal medications slow or stop the growth of fungus.
Research:
Left untreated, fungal infections can lead to serious medical conditions. Consequently, it is important to know what kind of antifungal medicine, and how much, to take to kill a certain type of fungus. Some of the most common fungal infections are athlete's foot, nail infections, and yeast infections. The fungus group includes molds, yeast, mushrooms, and more. Fungi actually make up a kingdom of organisms separate from plants, animals, and bacteria.
Different antifungal agents work in different ways to kill fungus. Two of the most common antifungal agents used in nonprescription antifungal medicines areazoles and allylamines. Azole and allylamine both work by disrupting the fungus' ability to make ergosterol, which is a chemical compound important for the fungus to make a strong cell membrane. Without a strong cell membrane, the fungal cells could become leaky and die. Ergosterol is not in plant or animal cells, which makes it a good compound to target if you only want to kill the fungus without hurting infected plants or animals (including people).
Azoles and allylamines disrupt the