Proving of Identities
Answer the following: cos(θ − β) = tanθ + cotβ is an identity. cosθ sinβ
1. Show that
2. Prove that sin(x + y) + sin(x − y) = 2 sinx cosy.
3. Verify that
sin(x − y) tanx − tany = sin(x + y) tanx + tany
4. Derive an identity for cos3θ in terms of cosθ.
5. Prove that
sin2θ + sinθ = tanθ is an identity. cos2θ + cosθ + 1 2tanθ = sin2θ is an identity. 1 + tan2 θ
6. Verify theta
7. Prove that
x 2 − tan2 = 1 is an identity. 1 + cosx 2
8. Show
tanθ − sinθ θ = sin2 is an identity. 2tanθ 2
θ 2 = cosθ. 9. Prove that θ 1 + tan2 2 1 − tan2 tanθ + sinθ θ = cos2 is an identity. 2tanθ 2
10. verify that
1
1.1
Solutions cos(θ − β) = tanθ + cotβ is an identity. cosθ sinβ cos(θ − β) cosθ sinβ = = = = cosθcosβ + sinθsinβ cosθsinβ sinθsinβ cosθcosβ + cosθsinβ cosθsinβ sinθ cosβ + sinβ cosθ cotβ + tanθ
1. Show that
2. Prove that sin(x + y) + sin(x − y) = 2 sinx cosy. sin(x + y) + sin(x − y) (sinx cosy + cosx siny) + (sinx cosy − cosx siny) (sinx cosy + sinx cosy) + (cosx siny − cosx siny) 2sinx cosy
= = =
3. Verify that
sin(x − y) tanx − tany = sin(x + y) tanx + tany 1 sinx cosy − cosx siny cosx cosy • 1 sinx cosy + cosx siny cosx cosy sinx cosy cosx siny − cosx cosy cosx cosy cosx siny sinx cosy + cosx cosy cosx cosy sinx siny − cosx cosy sinx siny + cosx cosy tanx − tany tanx + tany
sin(x − y) sin(x + y)
=
=
=
=
4. Derive an identity for cos3θ in terms of cosθ.
cos3θ
= = = = = = = =
cos(2θ + θ) cos2θ cosθ − sin2θ sinθ (1 − 2sin2 θ)cosθ − 2sinθcosθsinθ cosθ − 2sin2 θcosθ − 2sin2 θcosθ cosθ − 4sin2 θcosθ cosθ − 4(1 − sin2 θ)cosθ cosθ − 4cosθ + 4cos3 θ − 3cosθ + 4cos3 θ
2
5. Prove that
sin2θ + sinθ = tanθ is an identity. cos2θ + cosθ + 1 sin2θ + sinθ cos2θ + cosθ + 1 = = = = = 2sinθcosθ + sinθ 2cos2 θ − 1 + cosθ + 1 2sinθcosθ + sinθ 2cos2 θ + cosθ sinθ(2cosθ + 1) cosθ(2cosθ + 1) sinθ cosθ tanθ
6. Verify that
2tanθ = sin2θ is an identity. 1 + tan2 θ