APPLICATIONS IN RISK MANAGEMENT[1]
MARCO BETTER AND FRED GLOVER
OptTek Systems, Inc., 2241 17th Street,
Boulder, Colorado 80302, USA
{better, glover}@opttek.com
GARY KOCHENBERGER
University of Colorado Denver
1250 14th Street, Suite 215
Denver, Colorado 80202, USA
Gary.kochenberger@cudenver.edu
HAIBO WANG
Texas A&M International University
Laredo, TX 78041, USA hwang@tamiu.edu Simulation Optimization is providing solutions to important practical problems previously beyond reach. This paper explores how new approaches are significantly expanding the power of Simulation Optimization for managing risk. Recent advances in Simulation Optimization technology are leading to new opportunities to solve problems more effectively. Specifically, in applications involving risk and uncertainty, Simulation Optimization surpasses the capabilities of other optimization methods, not only in the quality of solutions, but also in their interpretability and practicality. In this paper, we demonstrate the advantages of using a Simulation Optimization approach to tackle risky decisions, by showcasing the methodology on two popular applications from the areas of finance and business process design.
Keywords: optimization, simulation, portfolio selection, risk management.
1. Introduction
Whenever uncertainty exists, there is risk. Uncertainty is present when there is a possibility that the outcome of a particular event will deviate from what is expected. In some cases, we can use past experience and other information to try to estimate the probability of occurrence of different events. This allows us to estimate a probability distribution for all possible events. Risk can be defined as the probability of occurrence of an event that would have a negative effect on a goal. On the other hand, the probability of occurrence of an event that would have a positive impact is
References: 1. D. Vose, Risk Analysis: A Quantitative Guide, (John Wiley and Sons, Chichester, 2000). 2. M. Fukushima, How to deal with uncertainty in optimization – some recent attempts, International Journal of Information Technology & Decision Making, 5.4 (2006), 623 – 637. 3. H. Eskandari and L. Rabelo, Handling uncertainty in the analytic hierarchy process: a stochastic approach, International Journal of Information Technology & Decision Making, 6.1 (2007), 177 – 189. 4. R. Dembo, Scenario Optimization, Annals of Operations Research 30 (1991), 63 – 80. 5. P. Kouvelis and G. Yu, Robust Discrete Optimization and Its Applications,(Kluwer: Dordrecht, Netherlands, 1997), 8 – 29. 6. J. P. Kelly, Simulation Optimization is Evolving, INFORMS Journal of Computing 14.3 (2002), 223 – 225. 7. F. Glover and M. Laguna, Tabu Search, ( Kluwer: Norwell, MA, 1997). 8. F. Glover, M. Laguna and R. Martí, Fundamentals of scatter search and path relinking, Control and Cybernetics 29.3 (2000), 653 – 684. 9. W. J. Haskett, Optimal appraisal well location through efficient uncertainty reduction and value of information techniques, in Proceedings of the Society of Petroleum Engineers Annual Technical Conference and Exhibition, (Denver, CO, 2003). 10. W. J. Haskett, M. Better and J. April, Practical optimization: dealing with the realities of decision management, in Proceedings of the Society of Petroleum Engineers Annual Technical Conference and Exhibition, (Houston, TX, 2004). 11. H. Markowitz, Portfolio selection, Journal of Finance 7.1 (1952), 77 – 91. 12. J. April, F. Glover and J. P. Kelly, Portfolio Optimization for Capital Investment Projects, in Proceedings of the 2002 Winter Simulation Conference, (eds.) S. Chick, T. Sanchez, D. Ferrin and D. Morrice, (2002), 1546 – 1554. 13. J. April, F. Glover and J. P. Kelly, Optfolio - A Simulation Optimization System for Project Portfolio Planning, in Proceedings of the 2003 Winter Simulation Conference, (eds.) S. Chick, T. Sanchez, D. Ferrin and D. Morrice, (2003), 301 – 309. 14. S. Benninga, and Z. Wiener, Value-at-Risk (VaR), Mathematica in Education and Research 7.4 (1998), 1 – 7. ----------------------- [1] Published in the International Journal of Information Technology & Decision Making, Vol 7, No 4 (2008) 571-587.